REBOL Essentials, draft#37-09-Jan-2003 1
copyright vpavliu

Creating lightweight cross-platform Applications

Viktor Paviu
9-Jan-2003

RO 1= A @] I N 5
RESOURCESAND EXAMPLES ...ttt ettt e ettt e s st e s s e bt e e s s eaaae e s s eabeeesessbaesssessaeesssabeeeesans 5
PART |. REBOL LANGUAGE TUTORIAL .oeei ettt e e e e et e e s eaaae s s s esveeesesaaesssesnnnesssnraneseans 6
RV N I ST = =T 7
CARL SASSENRATH ABOUT REBOIL ...ttt ettt ettt e s e s e s s a et e e e e e s e s s sbabaeeeseassessssbareneeeaeess 8
VVHAT OTHERS SAY .vveeeeiiuteeeeieitteteeeitessessastesessasssesssassssssssassssesaasessssassseesssasasessaastesessasssssssssesessasstesesassssessssssnnes 8

AV =S 1O 11 TR 9
RUNNING YOUR FIRST PROGRAM ..ottt ettt e sttt e s s st e e s s saae s s s sabaeesssbteessassensssensnnans 10
RS 10 = SRR 10
GET THE USER GUIDE ..cciiiii i i ittt iee e e e s e e iabase et e s s s e s sesaabasseeesessseesasbaaseeeaeassee s sbabaeseseassessasbabanseeesssessassssrannnns 10
IR 12 ST SN 10

(R SO I YN R T 12
W ALUES ... tttttttiiee e e e ieeitbeeeeee e e s e s eesaab b e b e e e e eessses s s b ba b e e e eeeaseesa b babae e e easeeesaassae b e s e e e eseesseassasba b e eeeseeseesaabbabaeeeeesseesannsns 12

D F= 1K= 14 01 P PSSP 12
LAY o 1 13
1Y/ 1= 0 AT 0] o P 13

(0Tt 1o =AY o o TSP PSR RTPRPORTRPRN 15
PIOECHING 8 WWOTT ...ttt ettt b e bbb et b e b e et bt b e b e e e bt b e b e ne b e 16
20 ! = N 16
(@] N[/ U= T SRR 17
CONTROL STRUCTURESottt ettt ettt s s e st e e e s s a e e s s s b ae e s s e bbesasssbaeesssabesessasbbenssannns 18
MW HAT ISTRUE?. ... ittt e e e ettt et e e e e e e s s b b et e e et e eeeeesaa b b e b e e e e eeaeeesaa s aa b e s e e e eeeasseasansbabeeeeseessesaasbabaneseesesesannsns 19

S Y I Y7 20
[=1 TS = (o= AT o o 20
COMPATISON FUNCLIONSuieieieiiecteeites e ete st ete st e saeeaaeseesteeaeestesaesseeasanseseeeseensassesseensantesseeseensentesnennes 21

ST RINGS ...ttt et e ettt e e s e eee s s et eteseaaseetesaaaseessasseeeseasseesssasesesssbeeesseasbesessassanesssbenessasssenessnnens 21
S O I O 7 27X o = = 1S 21
EXERCISE PROGRAM S .. ettt ettt ettt e e ettt e e s et e e e s s b e e e s e st e e e s eeabeessseabeeesssabbeeesansseesssansnnans 22
L0 I N i [22
WORKING WITH REBOL .ottt ettt ee sttt e s s aae s s s e bt e e s s e bt e s s s essaaesssabbeeesssbassssasaseesssabenessns 22
INTERPRETER STARTUP. ...uttttiiiiiiiiiiiitbettieeseesseesisbassseesesssassssbasseestesssessassbassseesaassessasbassesssasssesssssbassnsseesssessnssns 23
INFORMATION PASSED TO SCRIPT ...uuuutttiiiiieeiiiiiitisssreeteseseisssssssseestesssssisssssssssssesssesissssssssesessssimmssssssseeesssesnnnns 24
S 24
CREATING SERIES .. .utttttiiiiiiiiiiiiutteettesessssaiisssssstesessssssissssssssssesssssisssssssssssesssesiassssssssssesssssismsssssssseessssssmnsssssssees 25
RETRIEVING ELEMENTS .. uttttiiiiiiiiiiiiititeiiese e et essiisbsssseesesssesssssbasseestesssessassbssssessesssessassbassrsssesssessssssarssessesssssannsns 25
IMODIFYING ELEMENTS. ... uutiieiiiteeeeeeetteeeseeaeeeesssbeeeesassteeesessseesssasssseseasbeesssasseeesssseessassenessassenesssnsenessansresesansnns 26
TRAVERSING SERIES......ccctetiiiiteeesiiteiesesiseesesssseessssstesesasssessssassesasssstessssassessssassssessasssesssasssssssssssesesesssessssassssees 27
OTHER SERIES! FUNCTIONS ttttiiiieie e e s seeitaeeieese s s s sesssbaasteesessssssassbasseseseasssssassassssesessssssssssssnsssessssssesssrsnnnes 28
(L1 (O 11]\ T 29
INTERFACE SPECIFICATION BLOCK ...uuttiiiiiiiii ittt ie e e eee sttt e e e e e e s s e e s bab e e e e s e s s sessbbabseeesasssesssnsbabanseeesseesanses 29
= 1o U o T Y 1T PSPPSRV UR SRS 30
AdAING DOCUMENTALION. ...ttt ettt sttt b e s e e e saeebe e e eabesaesae s e ebesbesaeensesbesbeeneanbeseeaseans 30

R TS0 11T 31
INTERACTION WITH THE OUTSIDE .. .uuuttttiiiieeiiiiiittareeeetesesesssissssseessesssessssssssssssesssessassssssssssessssssssssssssseesssesansnns 32
LIEral AFQUIMENLS........iitiieieie ittt ettt sttt s b e h e e besb e s aeeaeeseeeb e e aeenbesaeeh e e s e beebeeaeenbeseesbeeaeanbesaesnnans 32

LT o 10 .07 (TR 32

R 0] o= USSR 33

FUNCLION AT TDULES.....c..cceeeee ettt ettt ettt e e et e e s et a e e s s e st e e e s saabee e s s essaeeessabaseasessbanessassseasssabenansans 34
oy T 1S TN 34
g o O] 1= ol TSP SUURTURU RPN 34

LT 0= L o = 0] =P 34
EXERCISE PROGRAMS ...ttt e e ettt e e e et e e s e e e s e st ee e s essaesesenseeessanbaeeesensensssnnneens 36
TINY REFERENGCEottt ettt et e e e e ettt e s e et e e e s s eaaeesssaateeeseasaaeessassasessssaeesseasbeeessassneesssareneesans 37
(00110 1< /L 37
L DI gt (0] = R TR 37
HEID & DEIDUG -...ccveteeeete et bbb st b e bt b e b s e et b e e b e et bt b e b et bt sbe s b e et ebe s 37

V=110 T2 (o o [T 37
o0 1= PP P PP PRSI 37

S 0] o] ol o =Y =1 LU= L] o PSR PR 37

S < 1TSS 37

S 1T 0P 38

TS o 38
PART |1. SELECTED REBOL CHAPTERS . ..o oottt ettt et etee e et e s s ettt s s saaee s s sastenessnnaeessensneens 39
PARSING ..ottt ettt e e e e ettt e s e e eeeesesaeeeseaseeessaaeeessaasaeessaaseeeessasseeesaassaeesaaaseeeesaaseeeesaassenesenneeeenannnnens 40
QUICK INTRODUCTION TO BNF-LIKE GRAMMARS.......cciiteieiiteeteeteeiteesseesseesteesteessessaeessesssesssessssssssssssssesnsens 41
BINF SYMDOIS. ...ttt sttt ettt e st et e s et eb e et eneeseeeseeneeeeseeeneenteseesreeneenteseeeneens 41

L I TN L T = = 1 N 42

R SO ST =]\ 0] I = N 43
(0] 01U [0 o) N 44

(O 7= L O I 45
CGl & RBOVS EMBEDDED REBOLuttiiiiitiie ettt ettt e s eaate s s s bae e e s essbe e s s ssaaeasssnbesessansbesessnnnns 45
NETWORK PROGRAMMINGottt eeeee e ettt e e e e taee e s s baeeeseasbeeeseensaesesssseeessaseeeesansseesssnssnnens 45
RTA =TS AV = = TSN 45
INSTANT IMESSENGER ... ieuveeesieueeeesseteeessaassssssassesssasesessasssesssassssesssasessssaasseessasseeesassenessassssssssasnesssssresessnsnns 45
KIML mRPC ..ottt ettt e s s et et e e e e eaee e e s e aeeessasseeeseaaseeessasaseessabeeessasstesessassaeesssabesessasstenessnnens 46
REBOL IDIOMS ...ttt ettt e e et et e st e e e s e s b e e e s saasaee e s sabseeeseasbeeassanseesssasbenesssabbeeesanssenessanrnnans 47
GETTING DEFAULT VALUES. ... ttitiiittteessetetessaessesssessssasssasesessassesessasessssssasssessssstesessasssssssassssessssssesesssssassssassnness 47
REDUCING COMMON SUB-EXPRESSIONS.......ccciiiiitttttiieieseieiiissssseeettesssesssssssssssssesssessssssssssesesssesssssssssseeesssessnnns 47
(oA R N R = 1O] I AV A L R 48
RV 1 5 49
Y I 2 =TSR 49
LIS TN RS 12 =5 49
CUSTOM STYLES. .. uuttttitiiiiiiiiiiiittreetiesesessasiabassetetesessasiabasseeetessssasaasbssseeetesssessasssssbesssesssessassssbansseessssssanssrsnnnns 50

[@IS T N1 NS 50
Y I = (== = 2 = ot = 51
EXERCISE PROGRAMS T ettt ettt e ettt e ettt e e s st e e e s s st e e e s sabee e s senaaeessssteeesessneessansnnans 53
DIRAN ettt ettt ettt e et e e e s s et et e s eaebeeeesaa—eee s abaeeesaaabeeeseaa—eeeeabeteeeaabteteseaereeeaabaeeeeaabeeeesearreeesaarerees 54
DRAW DIALECT WORDS ...uueiiiiiiiiieiittettiiee e e st eesistbaseseessasseasssbasseeesasssessassbassseesaassessasbasssseeasssesssasbabsssssasssesanssns 55
DRAWING IN DETAIL utttitiiiii e e i eeettetteees e e e s e e st baae e eesesssessaba s s e e eeeassessaasbaseeeeseassessasbabseeesasssesssassabaseesasssessnssns 56

[T =TT 56
0] 1Y T0] L TSSOSO P SRR UR PSR 56
RECIANGIESttt b e bt bt e bt s b e e he e b e se e eh e e et e a b sh e eh e e aeebesheeaeenbesbeebesananbesaenneans 56
(O] o 1= 56

S 0= 13 1 a0 o] o P 57

T oS 7= 1 SR 57
T g To =T == 57

Vo [0 1 0T I 7= -SSR 58

F¥o (o[g o = AT 58

WWORKING WITH IMAGES....ceiiicutteeeiitteeeessttet e s sseeeesssseeeessssseeassasseeaeeassaeessassaeeeeansseeesaassesesassenessassenesennsenessnnnnnees 59

EXERCISE PROGRAMSIIV ettt s bt e s ettt e s s b e e e s s bt e e e s eab e e s s s abbaeesssabbeeesesaensssnrnnens 61
L o L O I 62
SCALING tttttttiet i i i e iiibtrt ettt e e e e e e se et eeereaeeessasba b e s seeeseeessassaabbaseeeseeesea s s s basbe e e seaseee s n s b e b b e e e seassesaassbabbanesessesssannnbrnnnns 62

LI 1L 62
SUBIMAGES.......ciiiiitttttttieee e et tesiabreeeteeesesaasiabasseeesaeesaasaabasseeesaasseasasb s s s e e e sesaseesassssbsesseeesesaaasssbannesesseessanassrannnns 62
JLIESY N N LS 1 0 62
IMAGE PROCESSING.eeeeieureeesiiueeeesesstereseesssesesssseessasstesesassssessaassesessassassssasssssessasseessasssenessassssssssssenessanssesesannns 63
(€27 011 TR 63

[N = TN 63
AALGORITHMIC SHAPES. ...t tttiiiiiiiieiiitteteieetesstesstebaseeeteesssesasasbabaseteaaesesaassasbasseeasaessassssbasssessesssessasbabaeeseasssesannses 63
(RPN BT RN L VA =\ I SR 64
LIRS = O = = o SN 64
Y4 = RN 65
N7 =N 65
L= T 65

0] =5 = o TR 66
L] N YR 66
(07 = TR 66

Foreword

Thisisthe accompanying tutorial to the REBOL course | held during 2002/2003 at the
technical college HTL Spengergassein Vienna. As class time was very short | had to put as
much useful information in this book to make it possible for the students to follow the fast
pace of my lessons by studying at home. At the same time it should comprise all essential
information on REBOL into a single document.

Resources and Examples

During the text you will often find references to files like %filename.r. These point to scripts
that can be found online at http://plain.at/vpaviW/REBOL /examples and are not included in the
printed tutorial.

Source code of examples and sample solutions for all exercise programs can aso be found
online at http://plain.at/vpaviu/REBOL /examples/.

Source code throughout the tutorial that has a>> prompt in front can be directly entered into
the console. If the prompt is missing, the code is some specific kind of dialect and thus needs
to be passed to a function which understands that dialect (ie. VID code must be passed to

| ayout). What to do with the code is pointed out directly in the chapters.

PART |. REBOL language tutorial
The first part makes you familiar with REBOL concepts and terms, summarizes all language
elements and provides a profound starting ground for own programs and the following

specialized chapters.

What is REBOL?

REBOL isafree, cross platform, highly reflective, flexible, compact, interpreted language
that optimally fits the needs of daily programming tasks — especially network/Internet related
tasks. REBOL was designed by Carl Sassenrath, the software architect responsible for the
Amiga OS. REBOL wasfirst released in 1997 and since then there have been many
improvements. In 2002 REBOL was even listed as nominee for the Webby awards for
technical achievement, neverthelessit's still rarely known.

REBOL stands for "Relative Expression Based Object Language”. Let'slook at some termsin
this paragraph in more detail:

free
REBOL isnot freein terms of "Free Software” (www.fsf.org), but it'sfreein
that you don't have to pay for the interpreter aslong as you don't want to sell
your programs.

cross platform
Currently interpreters for 42 platforms exist. Scripts designed for Win32 can
also berun on aUNIX platform (or on the other platforms for which an
interpreter exists) without modification.

highly reflective
the specification of al functions (and other words) can be obtained and
manipulated during run-time.

flexible
Everything in REBOL isa"word". There are no differences between control
structures, functions, variables and so on like there are in most other languages.
For example you could redefine the word IF that it no longer acts as the
conditional expression we are used to.

compact
The interpreter for the /Core language weighs in at 250K B, the graphical
interpreter /View is about 500K B in size and even more compact versions
exist.

interpreted
REBOL programs are not compiled to binary instruction codes but rather
remain in their source form. The interpreter takes this source code and executes
it.
In recent times REBOL Technologies (the company behind REBOL)
developed aREBOL compiler. Thisisnot areal compiler per definition in that
it takes the source and trandates it to binary instruction codes but rather a
program that produces a standalone interpreter that includes a encapsulated
version of your source which still remains interpreted.

optimally fitsdaily I nternet programming tasks
Interacting with the Web is very easy:

page: read http://ww. htl-tex. ac. at/
send vpavl u@l ai n. at page

Thistwo line example reads a document from the WWW and sends it to the
given email address.

relative expression
Thewordsin REBOL (everything, as we already know (see flexible)) have
special meanings depending on the context in which they are. copy used with
astring, makes a copy of the string, whereas copy used with a port does not
replicate the port but retrieves it's currently available data. More on the details
of strings and ports later — just remember that there is no single defined
meaning for aword but rather a unlimited set of things aword can stand for,
depending on context.

Carl Sassenrath about REBOL

[...] REBOL isnot atraditional computer language like C, BASIC, or Java. Instead, REBOL
was designed to solve one of the fundamental problems in computing: the exchange and
interpretation of information between distributed computer systems. REBOL accomplishes
this through the concept of relative expressions (which ishow REBOL got its name as the
Relative Expression-Based Object Language). Relative expressions, also called "diaects’,
provide greater efficiency for representing code as well as data, and they are REBOL's
greatest strength. For example, REBOL can not only create a graphical user interface in one
line of code, but it can also send that line as data to be processed and displayed on

other Internet computer systems around the world.

The ultimate goal of REBOL isto provide a new architecture for how information is stored,
exchanged, and processed between all devices connected over the Internet. Unlike other
approaches that require tens of megabytes of code, layers upon layers of complexity that run
on only asingle platform, and specialized programming tools, REBOL is small, portable, and

easy to manage.[...]
-- Carl Sassenrath

What others say

This, like the Amiga and BeOS, could be another doomed computer language that should
have ruled the field. It probably came along five yearstoo late. REBOL is afully network-
aware relative expression based object language. Take a dash of PERL, mix with the cross
platform compatibilty of a Java, and make it extremely easy for beginnersto start coding, and
you get the general idea. REBOL has all kinds of cool potential, but until a deep and wide
developer/user community gets built, and until it findsits niche in an already crowded
language marketplace, it's probably doomed to obscurity. As a startup, finding the funding is
going to be problematic in an environment where instant results are called for.

-- turksheadreview.com

Versions
Currently three versions of REBOL exist:

 /[Core The core language. Console version, free
* View Extends /Core with GUI features, free
e /Command "Server" edition. Provides access to the underlying System,

offers database connectivity, FastCGI support and RSA
encryption among other features.
View/Pro Adds sound to /View

In recent times there were so called REBOL kernels developed. That is smaller versions of
the interpreter which only implement the most critical functions of the language. This results
in reduced overhead and much faster startup times as you only include the words you know
you are going to use.

* /Base Kernel that implements/Cor e functionality
« /Pro Adds command features to /Base
* [Face Adds graphics and sound to /Pro

Furthermore there isthe REBOL /SDK to be rel eased this week (12-Dec-2002). Not areal
REBOL version, rather akit of development tools comprising the kernels, the "compilers’
(/Enbase, /[Enface and /Enpro) and PREBOL , REBOL S preprocessor.

REBOL/IOS is not part of the language tools but an application based on REBOL offered by
REBOL Technologies that enablesits users to exchange data, co-work on projects and
simultaneously use REBOL programs.

Read more about the REBOL language in general at
http://www.rebol.com/index-lang.html
http://www.rebolforces.com/
http://www.codeconscious.com/rebol/
http://www.rebol.com/bio-carl .html

10

Running your first program

Setup

In thefirst part of thistext we only look at the core functionality until we get a reasonable
grasp of REBOL. The free /Core interpreter is suited perfectly for our needs. If you want to
download /View instead of /Core, that's ok but you won't experience any advantages over
/Core users.

Get acopy of the interpreter for you platform from www.rebol.com and start it. Answer the
questions and we are done with setting up.

If you are experiencing problems with the /View setup because of limited access, close the
application window with the button in the upper right corner — the installation will quit but
leave you a REBOL console capable of /View commands.

Get the User Guide

Download the REBOL/Core User Guide (http://www.rebol.com/docs/core23/rebol core.html).
A great resource if you have to look something up. Reading the whole book takes awhile — |
know, | did. But to start working with REBOL you don't have to do it — this brief tutorial
should suffice.

Try this...

Open the interpreter and try some REBOL snippets. >> is the console prompt and mustn't be
entered.

>> print "Hello, world"

>> strl: "Hello,"
>> str2: "world"
>> print [strl str2]

>> | oop 10 [prin "*"]
>> | oop 10 [print "no tv and no beer make honmer go crazy"]

pri nisnot atypo. It doesexactly what pri nt does: printing atext to the console. But
pr i n does not automatically append aline break.

>> help prin
>> help print

>> j: 20
>> proc: print ["i =" i]

Here we have seen that aword followed by acolon aspr oc: assigns the word the following
value. But when wetriedto assign pri nt toproc itfailed astheinterpreter immediately
executed pri nt andasprint doesnot returnavaue, thereisnothing for pr oc to be set
to.

11

Togivepr oc the meaning we want it to have — being a procedure that prints the value of i —
we have to prevent the interpreter from immediately executing the word pri nt and rather
return thevaluepri nt to pr oc. Thisisdone by enclosing the words with square brackets.

>> proc: [print ["i =" i]]
>> source proc
>> repeat 1 10 proc

SOURCE shows the code that created pr oc, so now we know that pr oc hold the right value.
When we put pr oc in aloop that continuously incremetsi , we get the result we've asked for.
Putting REBOL code in brackets prevents the interpreter from immediately executing it.

12

REBOL Basics

Values

The REBOL language is built from three things: values, words and blocks. In this chapter we
have a close look at the values.

A value is something that stands literally there. 42 for example. A number that has the value
42. Another examplewouldbe"that's ok, ny will is gone".Thistimeitwasa
string. One last example: $0. 79. Money as we would guess (and we are right).

>> type? $0.79
== noney!

We have seen that there are many different types of entering values literally depending on the
type of data. 42 isanumber whereas" 42" would be a string. So values have different types
of data or datatypes. Similar to other languages where you have datatypes like char, int, and
float. In REBOL however not the variables have the datatypes but the values themselves. This
IS very important.

Datatypes
Datatype Example
integer 1234
decimal 12. 34
string "REBCL worl d!"
time 15:47: 02
date 12- Decenber - 2002
tuple 192. 168. 0. 16
money EUR$0. 79
pair 640x480
char #' R
binary #{ ab82408b}
email vpavl u@l ai n. at
issue #1 SBN- 020- 1485-41-9
tag <ing src="cover.png">
file % c/ rebol / rebol . exe
url http://plain.at/vpavl u/
block [good bad ugly]

To convert between datatypes, use one of the existing t o- type! functions. Type
>> help to-
in the console to get an overview of conversion functions.

For amore thorough examination of different datatypes and what you can do with them skim
through the chapter Valuesin the Appendix A of REBOL/Core User Guide.

13

Words

The second important thing in REBOL are words. Words are like variables but they go a bit
further. A variable can hold a value —words can, too. In C for example, if, for and printf() are
not a variables; you can't change the "value" of anif in C. In REBOL everything not being a
block or avalue (which stand literally there) is aword and thus can be assigned a value.

>> num 12

== 12

>> if: "some string"
== "sonme string"

Y ou have just redefined theword | F. Thisis not agood idea unless you know exactly what
you are doing because from now on, at every place wherethereisan | F it no longer checks
the word immediately after it for being true and if so, executing the following block (that's
what if usually does: conditional evaluation) but evaluates to "some string” which will change
the behaviour of programs drastically.

Words do not have datatypes. Any word can hold any value and no declaration is required.
Just assign aword avalue. If you try to evaluate aword that has no value assigned (that has
no meaning to REBOL), the interpreter will report an error.

>> print foobar
** Script Error: foobar has no val ue
** Near: print foobar

Though there a no datatypes for words, there do exist different types of words. (Don't get
confused with that — it's easy)

Types of Words

Type Example Purpose

word var evaluate to it's value (interpret the word)
get-word svar get the value behind var

set-word var: set var to anew value

lit-word "var the word literally

Words return the interpreted value behind the word. If the value is a number, thisyields the
number. If the valueisastring, thisyields the string. If the value is afunction, thisyields the
result of the executed function.

14

Get-words return the value behind the word. Thisis similar to the previous paragraph in many
cases, however with functions for example the result differs. Not the interpreted function but
the function itself is returned.

funcl: now

12- Dec- 2002/ 15: 21: 15+1: 00
func2: :now

wait 0:01 ;1 minute

funcl ;holds interpreted ' now
12- Dec- 2002/ 15: 21: 15+1: 00
func2 ; holds ' now

12- Dec- 2002/ 15: 22: 15+1: 00

First we assigned FUNC1 the value of now (NOWreturns the current date/time value),
secondly we assigned FUNC2 the value behind now (NOWitself). This can be proven by the
following lines:

>>

source funcl

funcl: 12-Dec-2002/15:21:15+1: 00

>>

source func?2

func2: native |

]

"Returns the current |ocal date and tine."

/year "Returns the year only."

/month "Returns the nonth only."

/day "Returns the day of the nonth only."

/time "Returns the tinme only."

/zone "Returns the tine zone offset fromGVI only."
/date "Returns date only."

/ weekday {Returns day of the week as integer}

/ preci se "Use nanosecond preci sion”

Set-Words don't need any further explaination. A world followed by a colon setsit to the
following value and returns this value.

>>

print a: "REBOL"

REBCL

>>

a
" REBCL"

15

Lit-Words are away to literaly specify aword. The words name itself is the value of alit-
word.

>> dunp: func [word][

ei ther value? word [
print [word "is" get word]
11

]

print [word "is undefined"]

]

>> a: 42
== 42

>> dunp 'a
ais 42

>> dunp 'b

b i s undefined
Here we passed the lit-words to a function that tests whether aword is defined (has a value).

>> set 'nane "REBOL" ;sanme as nane: " REBCL"
>> get 'nanme :sane as : nane

Unsetting a Word

By unsetting aword you take the previously assigned value from it. The value of theword is
from then on undefined. Evaluating unset words yields an error.

>> word: $100

== $100. 00

>> print word
$100. 00

>> val ue? 'word

== true

>> unset 'word

>> val ue? 'word

== fal se

>> print word

** Script Error: word has no val ue
** Near: print word

16

Protecting a Word

If aword is protected, trying to assign it a new value produces an error. This can be used to
prevent some words from being mistakenly redefined. It is, however, no guarantee that none
of your functions can change it's value because a call to UNPROTECT makes the word accept
values again.

>> chr: #'R

== #"R'

>> protect 'chr

>> chr: #"A"

** Script Error: Word chr is protected, cannot nodify
** Near: chr: #"A"

>> unprotect 'chr

>> chr: #"A"

== #"A"

Blocks

The third thing used in REBOL among values and words are blocks. This chapter introduces
Blocks in a short manner — more detail follows in the chapter Series!.

Aswe aready saw in the introductory example, blocks are made of square brackets with zero
or more elementsinside and the elements inside the block are prevented from eval uation.
Blocks can be of any size and depth and their elements of any type.

>> colors: [red green bl ue]

== [red green bl ue]

>> data: [now date colors [colors $12] 4]
== [now/ date colors [colors $12.00] 4]

All of them are valid blocks. The first one consists of three (maybe undefined) words. That
the words might be undefined is not a problem because the interpreter does not look inside the
block until you tell to. Thisis sometimes required — asin the fourth line where we want to
have the previously defined blocks as elements of this block, rather than the words.

>> do [now/ date colors [colors $12] 4]

== 4

>> data: reduce [now date colors [colors $12] 4]
== [12-Dec-2002 [red green blue] [colors $12.00] 4]

DO evaluates the block and returns the last resulting value. REDUCE also interprets the block
but returns all results in anew block. Thisis often needed to pass complex argumentsto
functions.

Both words tell the interpreter to do evaluation inside the given block. If this block contains
further blocks however, they are not evaluated. That's why the colorsinside the inner block
are still unevaluated.

17

>> conpose [now date (now date)]
== [now date 12-Dec-2002]

conpose isareduce limited to values inside parentheses which is sometimes useful to create
blocks that contain code and data.

Word Example Result

reduce [1 2] evaluates block, returns block of results

renold "[1 2]" returnsastring that looks the same as the result from reduce

reform "1 2" reduced block converted to astring

rejoin "12" astring containing all results joined together

conpose [1 2] evaluates only words in parens inside a block
Conclusion

Asthere are only three types of information in REBOL (values, words and blocks) used for

everything from variables, control structures, functions and data— thereis no real difference
between code and datain REBOL. All there is are words with a predefined meaning (value)
that describe the language.

And this language is the subject of the rest of the first part.

18

Control Structures

Asin (almost) every other programming language there are control structuresin REBOL as
well. Control structures are program statements that control the flow of the program.

The following lines compare REBOL s control statements with those known from C++ (or
related languages)

do [...] {...}
DO evaluates the block. Or a string, or afile, ...

I f expr [...] if(expr) {...}
The block isonly executed if the expression evaluates to something true.

either expr [...]][...] if(expr) {...} else {...}
If the expression evaluates to true, the first block is executed, the second block otherwise.
Note that thereisno elsein REBOL.

while [expr]] whi | e(expr){

] }

Whileisthe only control statement that has its condition inside a block. If more than one
condition is found inside the condition block, al conditions must be met in order to have the
loop executed.

for i 110 2 [for(i=1;i<=10;1+=2){

] }

For setsthe given variable to the initial value (1 here) and executes the block. Then the
increment (2 here) is repeatedly added to the variable and the block executed as long as the
variables value is not greater than the limit (10 here). Note that i has no value after the
execution of the loop.

until [do {
expr
] } while(expr);

Until takes the following block and keeps evaluating it as long as the last word evaluates to
true.

loop 10 [...] Il NAin C++
Repeats the passed block 10 times.
repeat i 10 [...] for(i=1;i<=10;i++) {...}

Incrementsi from 1 to 10 and evaluates the block for every i.

forever [...] while(1l){...}
A loop that never ends. Most times a BREAK isfound inside thisloop so that it is|eft again.
BREAK can be used to exit all kinds of loops.

19

switch/default var | switch(var){
101...] case 1: ... break;
2 [...] case 2. ... break;
101 defaul t:
}

Switch compares the observed value var with al itslabels and if one matches, the code
following the label is executed. If none matches and there is a default block, that block is
executed. The/ def aul t refinement tells the interpreter that there will be a default block.
In REBOL we would express this behaviour with some code similar to this:

switch: func [var cases /default case][

ei ther value: select cases var [do value]]|
either default [do case][none]
]

]

By entering sour ce sw t ch we can verify this assumption. The process of creating own
functionsis explained in the chapter function! later in this text.

What is true?
Every word that evaluates to something different from false or none is considered true.

>> jf O[print "this is inmportant!"]
this is inmportant!

Logical functions to make more complex conditions are

NOT a invertsthe result of a
a AND b logic: trueif both are true, false otherwise
aORb logic: falseif both are false, true otherwise

a XOR b logic: true if exact oneistrue, false otherwise

What AND, OR and XOR return their two values joined using the operator (bitwise). Shortcut
functions for ORing or ANDing alist of words are as follows:

all [] none on the first word that evaluates to false, last value otherwise
any [] returns the first value that evaluates to true, none otherwise

Simple Math

Mathematic expressions are strictly evaluated from left to right. No operator priority is

known, so you have to enclose the things you want to compute first in parentheses.

>> print 5 +5* 4
40
>> print 5 + (5 * 4)
25

Note that while there is no priority among the operators, operators take precedence over
functions. That isthe reason why pri nt 5 was not the first thing to be evaluated and the

maths performed on the result (which would be kind of awkward)

Mathematical functionsin REBOL can be applied to a wide range of numerical datatypes
which consist of Integer! (32bit numbers without decimal point), Decimal! and Money! (64bit

floating points), Time!, Date!l, Pair! and Tuple!.

Mathematical Words
Operator Word

+ add

- subtract

* mul tiply

/ di vi de

** power

/1 remai nder
exp value
| og- 10 value
| og-2 value
| og- e value

squar e-r oot value

absol ute
negat e

mnapb
max a b

si ne

cosi ne

t angent

ar csi ne

ar ccosi ne
ar ct angent

Purpose

two words added

second subtracted from first

two words multiplied

first divided by second

first raised to the power of second
remainder of first divided by second

evaI ue

logio value

log, value

loge value, In value
vvalue

returns absolute value
changes sign of value

returns lesser of two vaues
returns bigger of two values

trigonometric sine in degrees
trigonometric cosine in degrees
trigonometric tangent in degrees
trigonometric arcsine in degrees
trigonometric arccosine in degrees
trigonometric arctangent in degrees

Comparison Functions

Operator

Strings

Word

equal
strict-equal
strict-not-equal

sane?

greater
| esser
greater-or-equa
| esser-or-equal

21

Purpose

trueif values are equa
trueif equal (case-sensitive) and of sametype
trueif not equal (case-sensitive) or different

trueif referencing the same value
trueif values are different

trueif left is greater

trueif left islesser

trueif left is greater or equal
trueif left islesser or equal

Stringsin REBOL are aone of the series! datatypes which is covered later in more detail. To
get a better grasp of what strings are about wait for the series! chapter. For now it's sufficient
to know that strings are written enclosed in "double quotes’ or { curly braces} and to have a

ook at these functions

trimstr

upper case str

| ower case str
conpr ess source
deconpress source
append str value

| engt h? str

par se str delim

Special Characters

ARl

remove surrounding whitespace

convert to UPPERCASE

convert to lowercase

compresses a string

decompresses a compressed string

append to astring

returns length of string

splits a string into tokens, delimited by delim

"} }

NN\ N

"M carriage return

A(Cline), ™ linefeed (=newline)

A(tab), - tab

"(page) new page

N(back) backspace

A(del) delete

ACnull), "@ \O, ASCII NULL character
N(escape), ”"(esc) escape character

A (letter) control characters (#" A" to #""Z")
A (XX) ASCII char by hexadecimal number

Note a so the predefined words escape,

new i ne, tab,

crlf and cr.

22

Exercise Programs |

This chapter offers you some easy problems you can solve with the REBOL knowledge you
have acquired by now. Try to solve some of the example problems. Source code of sample
solutions for al programs can be found online at http://lain.at/vpaviu/REBOL /examples/.

Useful Functions

r ead source returns the string read from source (file, url, ...)
wri t e dest data writes data to destination (file, url, ...)

ask question prompts the user the question, returns entered string
I nput read a line from the console

to-integer value convertsvalueto aninteger

t o- dat e value converts value to a date

to-filevaue converts value to afilename

prin data prints data without line break

print data prints data, appends line break

foreach act list [...]

now

wn

No

executes the block for every element in list. act is set to the current
element each time
returns current date/time

Save the source of http://www.rebol.com to afile named %rebol .html (%ohttp-save.r)
Print the greatest of three numbers stored in a, b and c. (Y%abc-max.r)

Write a program that repeatedly asks the user for numbers and responds with the
newly computed average value. (%avg-dig.r)

Write a program that computes the average of a block of numbers. (%avg-blk.r)

Write a substring function that accepts a string and one parameter, the start offset
inside the string. Provide an additional refinement called len to limit the length of the
extracted substring. (%substr.r)

Compute the number of days since your birthday. (%age-days.r)

Scramble a string using ROT-13. Read the string from atextfile and print the
scrambled result to the screen. Used in Newsgroups to prevent accidental reading of
content. With ROT-13 characters from A to Z have numbers 1 to 26. When encrypting
data, every character is replaced by the character that hasits value plus 13 added. So A
becomes N. If avalueisbeyond 26, start again at A. So N (14) plus 13 (27) would be
A again. Aswe see, encryption and decryption is the same in ROT-13. (%rot13.r)

Working with REBOL

AsREBOL is an interpreted language, programming with REBOL is somewhat different to
programming in C++ or Java. It is more like a dialog with the console than constructing code

23

which isthen compiled. If you don't know how something worked, type a small example into
the console to remind you or ask REBOL for help by typing hel p word.
Two methods of executing REBOL code exist

1. typing directly in the console — easy and best suited for one-liners
2. creating and executing scripts — use an editor to write a script and execute it from the
interpreter

For the latter method you need to create avalid REBOL script which consists of a REBOL
header and some code.

REBOL []
:add code here

Thisisaminimalistic version of a REBOL script file with an empty header and no code.
Open anew file, add the following lines and save as hello.r.

REBOL [
title: "script exanple”
aut hor: "vpavl u”
date: 12-Dec-2002
version: 1.0.0

]

print "hello world"

Then, in the console enter

>> do %hello.r
Script: "script exanple" (12-Dec-2002)
hello worl d

and the script file is evaluated, assuming the interpreter runs in the same directory as the file
was created, so it canread %hel | 0. r.

Interpreter Startup

When the interpreter has finished startup, it triesto evaluate the files rebol.r and after that
user.r. rebol.r is overwritten with every new release of REBOL so you shouldn't useit for
your settings as they might get lost. User-defined settings can be stored in the user.r file. Y our
email settings for example.

>> set-net [vpavlu@lain.at nail.plain. at]

24

Information passed to Script

Y ou can add information about a script to the header. View pr obe

syst eni st andar d/ scri pt toseeadl valid fieldsfor a header. If the script is run, the
information from the header in the file can be accessed through

systeni scri pt/ header.

systeni script/args arguments passed to a script via the commandline (or via
drag'n drop, if afile gets dropped over your script) can be
accessed through this string

systeni scri pt/ parent holdsthesyst ent scri pt object of the parent script (a
script that called this one), if any

systeni script/path the path the script is evaluated in

systeni opti ons/ hone home directory, the path where to find rebol.r and user.r

syst enf opti ons/ scri pt the filename of initial script provided to interpreter when
it was started

systeni options/ path current directory

syst eni opti ons/ args arguments passed initialy to the interpreter via
commandline

systeni options/do-arg string provided by - - do option on command line

Series!

A seriesisaset of values organized in a specific order. There are many series datatypesin
REBOL which can all be processed with the same small set of functions. The simplest type of
seriesisablock which we already used.

Every seriesin REBOL has an internal index pointing to the start of the series. When working
with series thisindex is often changed. f i nd for example searches for a given pattern and
sets the index to point to the first element in the series that matches the pattern. Note that
although the resulting series looks to be a completely new list as all elements before the
internal index seem to be removed, it is still exactly the same series — only the actual start of
the seriesis not longer at its head.

>> nuns: copy [1 2 34 5]
==[12 3 4 5]

>> print nums

12345

>> | engt h? numns

== 5

>> nuns: find nuns 3
== [3 4 5]

>> print nums

345

>> | engt h? nuns

== 3

>> nuns: head nuns
==[1 2 3 4 5]

>> print nuns
12345

25

When saying the first value of the series you always talk of the value at the current index and

not the one at the very head

Creating Series

of the series.

>> a: "original"

>> b a
>> append b
>> print a

string"

original string

Assigning seriesto aword is always done by reference. So the word b isin fact a new word
pointing to the same data as a. If you want them to use different stringsuse B: copy a.
Note that this applies to values, too. It the previous example the value "original” (in the first

line) is changed to "original
copy.

>> f: func [s]
str: ""

print append str join s ",

]

>> |oop 3 [f
A,

A A

A A A

>> f: func [s]
str: copy ""

print append str join s ",

]
>> |loop 3 [f

copy series
array size
make bl ock! Ien

Retrieving Elements
pi ck seriesindex
series/1

first series

| ast series

copy/ part seriesnElem

string" aswell. To avoid unexpected behaviour, remember to use

[

A

[

A

copies a series. don't forget to copy!
creates aseries with given size
creates a block! with given size

gets element at given index

gets element at given index

getsfirst element (second, third, fourth, fifth aswell)
gets last element

returns copy of first nElem elements

26

Modifying Elements

Be careful with modifying elementsin alist that is referenced by more than one word as both
words are pointing to the same data.

>> str: "this is a long string”
== "this is a long string"

>> pos: find str "long"

== "long string"

>> renove/ part str 5

== "is a long string"

>> pos

== "string"

With change you can overwrite the element at the current index with anew value. If the
new valueisitself a series, all the elements are used to overwrite valuesin the list, starting at
the current index.

>> nuns: [1 2 3]

== [1 2 3]

>> print nuns
123

>> change nuns 3
== [2 3]

>> print nums
323

>> change nuns [5 4]
== [3]
>> print nums

543
I nsert seriesvalue inserts at current position
append seriesvalue inserts at end
change seriesvalue changes first value in series to given value
poke seriesindex value changes the element at (current index + index) to value
r epl ace series search replace searches for avalue and replacesiit
r enove series removes at current index

cl ear series removes all elements

27

Traversing Series
Modify the internal index to traverse over a series. Thisis done with the following functions.

next series returns series at next element
back series returns series at previous element
at seriesoffset returns series at given offset (+/-) relative to index
ski p series offset returns series after given offset (+/-) relative to index
head series returns series at very beginning
tail series returns series at end (after last element)

>> nunms: [1 2 3]

>>

[1 2 3]

while [not tail? nuns]]|
print nuns/1
nums: next nuns

1

2

3

== []

>> enpty? nuns
== true

>> print nums
>> nuns: head nuns
==[1 2 3]

>> enpty? nuns
== fal se

>> print nums
123

Keep two things in mind when iterating over series. First, the functions listed above do not
modify the internal index, they just return the series with modified index, so storing the result
Isrequired (see bold line). And second, after iterating over a series you are at the end and the
series seems empty, so go back to the head.

There are also predefined words for this kind of loop

forall series[] does same as |oop above

forski p series nElemf[] iterates over a series, skipping nElem elements
foreach word series|] iterates over series, word holds current element
renove- each word series|] like foreach, removes curent element if block istrue
For each isdifferent to the other two functions. The current element needn't be accessed

through seri es/ 1 but is stored in word each time the block executes and the internal index
Is not at the end after running af or each loop. r enove- each acts similar but also
removes the current element from the list if the block evaluates true for thisiteration.

Other Series! Functions

join vall va2

f or m value

nol d value

do block

reduce block

rejoin, reform renold

sort series
rever se series

find seriesvalue
sel ect series value
swi t ch series value

| engt h? series
tail?, enpty? series
I ndex? series

uni que series

i nt ersect seriesA seriesB
uni on seriesA seriesB

excl ude seriesA seriesB

di f f erence seriesA seriesB

28

returns the two values joined together

returns value converted to a string

returns a REBOL readable form of value (easy to load)
evaluates block, last value returned

evaluates block, block returned

evaluates block, join/form/mold applied to result

sorts a series
reverses order of series

returns series at position of value or none
returns the value next to the given value
does the value next to the given value

returns number of elements
return true if seriesisat isempty (= isat itstail)
returns offset inside series

duplicates removed

values that occur in both series
series joined, duplicates removed
seriesA without values in seriesB
values not in both series

29

Function!

A function is an optionally parametrized set of instructions that returns exactly one value. We
aready kept instructions in ablock for later execution. This can be said to be a simple form of
afunction with no parameters

>> j: 7

>> dunp-i: [print ["i =" i]]
>> do dunp-i

i =7

dunp-i isnotarea function, though asit still requires do to be evaluated.
>> dunp-i: does [print ["i =" i]]
>> dunp-i
i =7

>> dunp-i: func [][print ["i =" i]]
>> dunp-i
i =7

Here we have created real functions. The first one used does to produce afunction value
which isthen assigned to dunp- i , whereas the second snippet used f unc to do that. The
difference between these words is the number of arguments they require. FUNC needs two
blocks, the first to specify the arguments of the function and the second for the code. does is
ashortcut for creating parameterless functions so the first block is omitted.

A third word for function creation exists. f unct i on, which accepts three blocks. The first
for specifying arguments, the second to define local words and the third is for code.

Interface Specification Block

Thefirst block f unc expectsis called the interface specification block. A block that
describes the parameters and refinements for the function and documents the function. In the
simplest form its just a block of words representing parameters to the function.

>> dunp: func [var][print ["value =" var]]
>> dunp j

value = 7

>> dunp 42

val ue = 42

By using parameters we can apply this function to all valueswe liketo, not only i asin the
previous example. We lose, however the additional information of the variables namein the
output.

>> dunp: func [nane value][print [nane "=" val ue]]
>> dunp "j " j
=7

30

Though the function is not very useful any more and is kind of redundant, it does what we
want it to.

Restricting Types

Sometimesit's required to limit the types of the arguments passed to a function. For example
you can't do anything useful if you want to compute the area of acircle and instead of an
Integer representing it's radius you get the current time.

Y ou can restrict the valid types of an argument by writing a block of valid types behind the
according parameter.

>> dunp: func [
name [string! word!]
val ue

11

]
>> dunp j "]
** Script Error: dunp expected nanme argunent
of type: string word
** Near: dump j "j"

print [nanme "=" val ue]

If aargument of illegal typeis passed, the interpreter will report an error.

Adding Documentation

Though it's not required for a function to perform correctly, it's good practice to document
your functions inline, so that users can get information about them when typing hel p
funcname. Thisis done by adding strings to the specification block. The first string describes
the function itself. And after every parameter (or refinement) there can be a descriptive string
aswell.

>> dunp: func [
"Prints nanme and val ue of a word"
name [string! word!] "nane of word"
val ue "val ue of the word"

11

print [name "=" val ue]

]

>> hel p dunp
USAGE:
DUVP nanme val ue

DESCRI PTI ON:
Prints nane and value of a word
DUMP is a function val ue.

ARGUMENTS:
name -- nanme of word (Type: string word)
value -- value of the word (Type: any)

31

Refinements

Refinements can be used to specify variation in the normal evaluation of afunction aswell as
provide optiona arguments. Refinements are added to the specification block as aword
preceded by adash (/).

Within the body of the function, the refinement word is used as logic value set to true, if the
refinement was provided when the function was called.

>> dunp: func [
"Prints nane and val ue of a word"
name [string! word!] "name of word"
val ue "val ue of the word"
/[hex "print output in hex format"
11
if hex [
ei ther nunber? val ue |
val ue: to-hex val ue
11
val ue: enbase/ base form val ue 16
]
]
print [nane "=" val ue]
]
>> dunp/ hex "k" k
k = O00O0O0O0OFF
>> dunp/ hex "str" str
str = 746861742773206F6B2C206D792077696C6C20697320676F6E65

A refinement can also have arguments. Parameter names after arefinement are only passed if
the refinement was provided. Documenting strings can be provided to refinements as well as
refinement parameters the same as they are written for "normal” parameters.

The order in which the refinements are provided to the function upon executing it need not
match the order in which they were inside the specification block. The only thing you have to
be careful with isthat the order of refinement arguments matches the order of provided
refinements.

>> dunp: func [
"Prints nane and val ue of a word"
name [string! word!] "nanme of word"
val ue "val ue of the word"
/[hex "print output in hex format"
[file "wites to a file"
dest [filel] "file to wite to"
11
if hex |
ei ther nunber? val ue |
val ue: to-hex val ue
11
val ue: enbase/ base form val ue 16
]
]

32

either file |
write/ append dest rejoin [nane " = " value "7/ "]

11)

print [nane "=" val ue]

]
]
>> dunp/ hex/file "]

j %dunp. | og

Interaction with the Outside

Literal Arguments

Our dunp function still has aweakness: We have to pass the words name and its value to the
function.

When afunction is executed, all its arguments are evaluated and passed to the function. So
dunp never got j as second argument but the value behind j . And whileit'simpossible to get
the name of avariable if you only haveits value, the other way is easy.

One way would be to passj aslit-word so the evaluation of theliteral | yieldstheword |,
which is passed to the function. And there we could write

>> dunp: func [var][print [var "=" get var]|]
>> dunp '
j =7

to get the desired result. But then every call to dunp would require us to pass aliteral which
looks kind of strange.
Another way would be to prevent an argument from being evaluated and just passed as literal.
Thisisdone by making it aliteral parameter.

>> dunp: func ['var][print [var "=" get var]]

>> dunp j

=7

Another benefit that comes with working with the same word and not only the value is that
the value can be changed inside the function affecting the word on the outside, too.

>> zap: func ['v][set v 0]
>> zap |

>> dunp j

j =0

Get Arguments

Get arguments are in the same way related to literal arguments as get-words are to lit-words.
While the literal ones return the word without evaluating it, the gets return the value behind a
word without evaluating it. For functions this would be their code instead of their return
value.

>> print-func-spec: func [:f][print nold first :f]

33

Scope

Functions share the same scope as the environment that called them. That is, functions can
access words on the outside without having them passed to them. And sometimes a function
doesn't know what words are defined outside the function and must not be modified. The best
thing to do isto define all wordsinside afunction local to the function, unless you know that
you want to modify something on the outside.

But in REBOL the only things really local to afunction are its parameters and refinements.
Thetrick used in REBOL isto define arefinement named / | ocal and add al the words we
want to be local variables as arguments to this refinement. The special thing about this
refinement is, that it is not displayed by help.

>> f: func [a /local b][print [a "," b]]
>> f 23
23 , none

/1 ocal does not show up in the generated help, but it is still a normal refinement.

>> f/local 32 7
23 , 7

If you don't care about confusing help texts you can use other refinements as local variables as
well.

>> swap: func ["a "b /tnp][
tnp: get a
set a get b
set b tnp

]
>> set [a b][2 7]
>> swap a b
>> print [a b]
72

Returning Values

A function (as any other evaluated block) returns the last evaluated value. Some words
however terminate the execution of afunction before the end is reached

>> f0: func [][1 2 3]

>> f1: func [][1 return 2 3]
>> f2: func []J[1 exit 2 3]
>> f3: func [][1 throw 2 3]
>> f0

== 3

>> f1

== 2

>> f2

>> f3

** Throw Error: No catch for throw 2
** \Where: 3

** Near: throw 2 3

Function Attributes

Function attributes provide control over the error handling behaviour of functions. They are
written inside a block within the function specification body.

catch errors raised inside the functions are caught automatically and returned to the
point where the function was called. Thisis useful if you are providing a
function library and don't want the error to be displayed within your function,
but where it was called.

t hr ow causes areturn or exit that has occurred within this function to be thrown up
to the previous level to return.

Errors

Whenever a certain irregular condition occurs, an error is raised. Errors are of type error!
object. If such an object is evaluated, it prints an error message and halts.

>> either error? result: try [...][
probe di sarmresult
11

]

print result

t ry evaluates ablock and returnsits last evaluated value or an object of type error!. err or ?
returns true if an error! object is encountered and di sar mprevents the object from being
evauated (which would result in an error message and a halt).

Error Object

code error code number (should not be used)

type identifies error category (synt ax, mat h, access, user,i nt ernal)
i d name of the error. also provides block that will be printed by interpreter
argl...3 arguments to error message

near code fragment showing where error occurred

wher e field isreserved

Generating Errors

>> nmake error! "describe error here"
>> make error! [categoryidarglarg2arg3 |

Thefirst line creates a user error with the default id 'message. It will print the message unless
the error is handled with a catch.

The second line creates a predefined error. category and id are required and may be followed
by up to three arguments. To see all predefined errors have alook at thesyst eni err or
object where an object containing templates for the error messages lives for every category.

35

To create anew predefined error, just add a new id and error-message to the
systeni error/ user object.

>> system error/user: nmake system error/user |
nmy-error: [:argl "doesn't match" :arg2]
]

>> nmake error! [user mny-error "foo" "bar"]

Y ou can also group a series of errors together by adding a new category tosyst em err or

>> system error: make systemerror |

nmy-cat: make object! |
code: 1000
type: "My Errors"
my-error: [:argl "doesn't match" :arg2]
too-late: ["it's too |ate"]

]

]

>> make error! [ny-cat too-late |
** My Errors: it's too late
** Near: make error! [ny-cat too-I|ate]

To just print the error message without halting execution of the script, use these lines
>> disarnmed: disarmtry [make error! [ny-cat too-late]]

>> print bind (get disarnmed/id) (in disarnmed 'id)
it's too late

More about bi nd and i n can be found in the object! chapter.

36

Exercise Programs Il

At the end of thefirst part of the book you should do even more practice in REBOL to use
what you have learned. Write some example programs if you haven't yet. The more of these
problems you solve yourself, the better you will be.

8. Code the game hangman in REBOL. (%hangman.r)

9. Makeafunction that actsliker epl ace/ al | but for al filesin agiven directory and
instead of accepting only one search/replacement pair this function should accept two
blocks with search/replacement pairs. (%oreplace-in-dir.r)

10. Complete the function so that it takes all filesin the current directory with the
specified file-type as their extension, sorts them by date and renames them to name-
prefix followed by afour-digit index starting at 1. If the refinement /offset is given,
this should be the starting index. (Yoname-files.r)

name-files: func [file-type [file! string!]
name-prefix [file! string!]
[offset i [integer!]]|

]

nanme-files ".jpg" "vacation”

11. Add a/ recur si ve refinementto | i st - di r . (%list-dir.r)

12. Write a script that recursively adds all filesin a given directory to a compressed
archive. Write an extraction program for this archive that requires the user to enter a
password. Make sure the contents can not be read without the password and the
password can not be obtained from the script. (Y%omake-sfx.r)

13. Write a script that downloads a whole website for offline browsing. Be careful to
follow only href and src attributes that point to locations on the same server.
(Yoget-site.r) Hint:

get-hrefs: func [markup /local wurls url][
urls: copy []
parse markup [any |
thru "href=A"" copy url to """ (append urls url)

1]

urls

37

Tiny Reference

This chapter concludes the first part of the book. The following chapters are self-contained
and present a different aspect of REBOL programming each. Read them in no specific order —
just start with the chapters you are interested in most.

At the end of part one we give you a short summary on most frequently used REBOL words
already covered, to be able to cope with what follows. The exact types of arguments and
refinements can be obtained from entering hel p func. It's not that important to know the
functionsin detail —this comes over time — but it's important to know what word to use what

for.

Console I/O

ask ... prompt user for input
confirm ... user confirms

input ... read line of input

prin ... print (without newline)
print ... print (trailing newline)
probe ... print molded version

Files & Directories

read ... read file,url,..

write ... writeto file,url,..

load ... load REBOL code

save ... save REBOL code
rename ... renamesfile

delete ... deletesfile

dir? ... isadirectory?

exists? ... does exists?

make-dir ... creates directory
change-dir ... changes current path
what-dir ... current path

list-dir ... prints directory contents
clean-path ... cleans ./ and ../
split-path ... returns [path target]

Help & Debug

help ... displays help
source ... displays source
trace ... toggle trace mode

Evaluation

do ... evaluates a block

try ... like do. on error, returns error!
if ... conditional evaluation

either ... if with alternative

switch ... multiple choices

Loops
while ... test-first loop

until ... test-after loop

loop ... evaluate several times

repeat ... increment a number

for ... increment a number

forever ... endlessloop

foreach ... execute for each element in
series

forall ... iterate a series

forskip ... iterate a seriesin steps

Stopping evaluation

break ... exit aloop

return ... exit afunction with value
exit ... exit afunction

halt ... stop interpreter

quit ... quit interpreter

Series

copy ... Copy aseries

array ... create serieswith initial size
reduce ... evaluate inside block
compose ... reduce valuesin () only
rgjoin ... reduce and join series
reform ... reduce and form series
remold ... reduce and mold series
pick ... get element from series
first,..., fifth ... get element

insert ... insert at current index
append ... insert at end

change ... change first element
poke ... change value at position
remove ... remove first e ement
clear ... remove all elements

next ... series at next el ement
back ... series at previous element
at ... series at given element

SKip ... series after given element
head ... very start of series

tall ... end of series

length? ... series length

empty? ... if empty

tail? ... if empty

index? ... value of current index
sort ... sort aseries

reverse ... reverse a series

find ... find an element

replace ... replace an element
select ... value after found element
unigue ... remove duplicates

intersect ... sets; A? B

union...sets A? B
exclude... sets: A -B

difference...sets: (A ? B)—(A ? B)

Strings
join ... concatenate values

form ... convert to string

mold ... make REBOL readable
rgjoin ... join elementsin block
reform, remold ... see series
lowercase ... convert to lowercase
uppercase ... convert to uppercase
enbase ... encode in given base
debase ... decode from given base
dehex ... decodes %xx url-strings
COMpress ... compresses a string
decompress ... decompresses a string

Misc
now ... current date/time

random ... random value
wait ... delays execution

38

39

PART Il. Selected REBOL Chapters

The following chapters are self-contained texts on various interesting REBOL topics collected
from the REBOL/Core User Guide, the mailing list, various resources from other people and
of course, my experience with programming in REBOL. It is recommended that you read the
chapters you are interested most at the beginning, in order to be able to write programs you
can use and the other chapters when there istime, in order to get a decent understanding of the
REBOL universe.

40

Parsing

Parsing is the process of structuring alinear representation in accordance with a given
grammar. This definition has been kept abstract on purpose, to alow as wide an interpretation
as possible. The "linear representation” may be a sentence, a computer program, a knitting
pattern, a sequence of geological strata, a piece of music, actionsin ritual behaviour, in short
any linear sequence in which the preceding elements in some way restrict the next element. (If
there is no restriction, the sequence still has a grammar, but this grammar istrivial and
uninformative.) For some of the examples the grammar is well-known, for someiit is an object
of research and for some our notion of agrammar isonly just beginning to take shape.

For each grammar, there are generally an infinite number of linear representations
("sentences") that can be structured with it. That is, afinite-size grammar can supply structure
to an infinite number of sentences. Thisisthe main strength of the grammar paradigm and
indeed the main source of the importance of grammars. they summarize succinctly the
structure of an infinite number of objects of a certain class. -- [Grune, Jacobs: Parsing
Techniques, a practical guide]

<even- nunber > ::
<nune :

<nump* [0 2| 4] 6| 8]
[0 2] 2| 3] 4| 5] 6] 7] 8] 9]

An example for asimple grammar in BNF notation for the infinite-size set of even numbers.
For more information on parsing in general and different parsing techniques have alook at the
execellent book on parsing techniques by Dick Grune and Ceriel Jacobs published by Ellis
Horwood, Chichester, England, 1990;

Par si ng Techni ques, a practical guide
Dick Gune, Ceriel Jacobs

| SBN 0-13-651431-6

http://ww. cs. vu. nl / ~di ck/ PTAPG ht m

REBOL features a own BNF-like (backus-naur form) parsing dialect for this subject.

41

Quick Introduction to BNF-like Grammars

A grammar isaset of rulesthat describes alanguage, that is describes all correct assemblies
of charactersto words (or words to sentences) within that language. A context-free grammar
isaformalism consisting of a set of terminal symbols T (constant, literal values), non-
terminal symbols N (placeholders for other non-terminal- or terminal symbols), a set of
production rules how to transform N to T and a special non-terminal symbol Sto start the
production. The Backus-Naur Form is a notation to describe such grammars.

Again, two types of symbols exist: terminal symbols and non-terminal symbols. The terminal
symbols have afixed, literal value. Non-terminal symbols are placeholders for other terminal-
or non-terminal symbols. If you now want to create a regular word within this defined
language, you start with a special non-terminal symbol that is defined as the entry point for all
words and continually replace the variable non-terminal symbols with values according to the
grammar rules which tell which symbol consists of what other symbols. An Example will
clarify this:

<signed_nunber> ::= <sign> <digits> ["." <digits>]
<Si gn> : : : n +II | n - n | e

<di gi t s> o= <digit>]| <digit> <digits>

<d| gl t > - n OII | n 1II | n 2II | L. | n 8II | n 9II

A simple grammar for a number consisting of asign, some digits and an optional decimal
part. The sign can be one of +, - or e, the empty symbol. The square brackets denote that the
symbolsinside are optional. Digitsis either asingle digit or asingle digit followed by other
digits. By this recursion we get numbers of arbitrary lengths but at least one digit. The
symbols enclosed in quotes are the terminal symbols T.

-2.2.2 <sign> ... "-"

<digits> ... <digit> ... "2"

<digits> ... <digit> ... "2"

" . " not found in production rules; not avalid <si gned_nunber >
13 <sign> ... e(emtpy)

<digits> ... <digit> <digits> ... "1" <digits>

<digits> ... <digit> ... "3"

end reached, all rules obeyed; avaid <si gned_nunber >

BNF Symbols
Non-termina symbols <non-term nal >
Terminal symbols "term nal " orterm nal
Make something optional [optiona]
Repeat Zero to n times { repeated }
Repeat min to max times { repeated} nin. . max
Alternative <a> |

Grouped alternative (<a>) | <c>

42

Parsing in REBOL

In REBOL parsing is done with the function par se which takes two arguments: the subject
to parse and a parsing rule. The simplest method form parsing is to split a string into tokens of
information.

par se subject none split at whitespace
par se subject delim-string split at delim-string
par se subject rule-block parse according to rules

par se with none asrule doesin fact no splitting. The reason the string is split after a
par se with none is, that parse per default treats whitespace as delimiter and splits. If you
call parsewiththe/ al | refinement (treat whitespace as normal characters) and none as
param, you get the string unmodified.

>> str: "1,234,220.4 56,322.0 99, 118. 43"

>> parse str none

== ["1" "234" "220.4" "56" "322.0" "99" "118.43"]

>> parse str ",."

== ["1" "234" "220" "4" "56" "322" "0" "99" "118" "43"]
>> parse/all str ",."

== ["1" "234" "220" "4 56" "322" "0 99" "118" "43"]

Real parsing (not splitting as we did until now) is a bit more complex. The second parameter
iIsablock of BNF like parsing rules. Then parse does not return the split tokens (there will be
none) but a boolean value telling whether the string completely matchesthe rules. That isif
the string can be built from start to its end according to the rules.

Be sure to know the basic BNF terms before continuing.

REBOLs BNF dialect

A diaect is an extension to the REBOL language for a particular task that makes it easier to
express what you want for that given problem, in this case: parsing.

Non-Terminal symbols
are just plain REBOL words that hold a block with a production rule.

Terminal symbols
are strings, characters, tags, bitsets and the special symbol end.

"string" matches this string

#'c" matches this character

<t ag> matches this tag

end matches the end of parsed input ($in regex)

Bitsets are used to specify arange of alowed characters:

>> nuneric: charset ["012" #"3" - #"9" |
>> al phanum wuni on nuneric charset
[#'a" - #"z" #"A" - #"27"]
>> white-space: charset reduce [tab newine #" "]
>> no-space: conpl enment white-space
>> parse "parse is powerful” [some al phanum]
== true

Note that whitespace isignored unless you specify / al | .

Production rules
are any combination of terminal- and non-terminal symbolsinside a block.

[patl| pat2] patl or pat2

[patl pat2] patl then pat2

[4 pat] 4 times the pattern

[2 5 pat] 2 to 5 times the pattern patl

[sone pat] 1 to ntimes the pattern (pattern+ in regex)
[any pat] 0 to n times the pattern (pattern* in regex)
[opt pat] 0 or 1 times the pattern (pattern? in regex)
[none] e (match nothing)

Grouping of values or words is done with square brackets.

Special words
skip skips exactly one character
t o pat skips until pattern; (......)pat

t hr u pat skips until after pattern; (......pat)

Production

The process of continually replacing non-terminals with values according to the production
rules while moving over the text that isto be parsed. If we successfully reach the end, the
string is aregular word in the grammar. Fine.

But what we actually wanted to do, is parse the string not just test it. We have to somehow get
and modify the input so we can do something with it.

(code) the code is interpreted upon reaching this point
copy target copies text of next match to target

var: gets string into var

:var sets string to var

By combining grammar rules with executable REBOL code you can do powerful parsers.

Object!
CGlI & r80v5 embedded REBOL

Network Programming
Webserver

Instant Messenger

45

46

XML-RPC

XML remote procedure calls — a simple way to communicate with the outside world through
the use of standard protocols. Remote procedure calls are encoded in xml and transported over
http which makes it possible for two or more programs written in different languages, running
on different systems to communicate and co-work.

47

REBOL Idioms

Getting default values
Sometimes you want to use a default value if something isnone. To avoid constructs like

>> either none? system options/cgi []]
| oad system options/ cgi
]

use any to have the first value that is not false or none returned.

>> | oad any [system options/cgi ""]

Reducing common sub-expressions

>> data: [nanme "viktor" email vpavlu@l ain.at]
>> either (flag) |
print second find data
11

]

Asweknow ei t her returnsthe last evaluated value in the block, we can take common sub-

expressions out of the block which reduces typing effort, complexity and ease of maintaining.
Searching for alabel and then reducing the value immediately afterwards should be done with
sel ect instead of second fi nd.

nane

print second find data 'enail

>> print select data either node ["nane]["email]

Thirdtheei t her expr [][] issmply api ck with alogic! asargument (which returns
thefirst block if true, the second otherwise).

>> print select data pick [nane enail] node

48

PART Ill. REBOL/View

In the third part of the book, the graphical elements of REBOL are covered. For this we have
to download REBOL/View or purchase any other of the GUI aware versions of REBOL.

The version of View and VID used in thistutorial is 1.155.2.3 (check at startup). Some new
styles have been introduced since View 1.155.0 (used in /View 1.2.1) which are discussed.
In order to have access to the same styles and words as in this tutorial, you should get the
latest version of the free /View interpreter from http://www.reboltech.com/downloads/.

The interpreter that was used for this tutorial was REBOL/View 1.2.8.3.1 (where the 3.1
stands for the Win32 platform)

To tell which version you are currently working with, typesyst en ver si on inthe
console.

Everything in this tutorial should work in future releases of /View aswell.

All graphical elementsin REBOL are made of faces. A face is an rectangular area that can be
displayed on the screen and is described by various pieces of information such as size, color,
offset, text in a specific font, an image to be displayed, entry points for event handling
functions, ...

To view the basic face from which al other faces are derived type pr obe f ace inthe
console. If you get an error like face has no value, you should remember to download a
graphics enabled version of REBOL . As stated before, all graphical user interfaces are made
of such faces. Fortunately REBOL provides us with an dialect for easy creation of predefined
and customized faces so we don't have to reinvent buttons and the like. So we start with
examining the visual interface dialect before diving deeper into /view.

49

VID

VID (Visua Interface Diaect) is an extension of the REBOL language that makes it easier to
express user interfaces.

| ayout isthe function that doesthe VID processing. It returns a construct of faces which
can then be displayed with vi ew.

Note: All sample code in this chapter isvisual interface dialect only. The samples have to be
written insideal ayout [] block which then has to be displayed.

Styles

With styles you express what to display. A f i el d for text input or abut t on are examples
of styles. Every style can be customized with parameters written after them (called facets).
The order of the params does not matter as VID differentiates them by their datatype. If a
string! follows, it isinterpreted as the text for the specific widget, if apair! (20x10) follows, it
Istaken asthe size and so on. A complete list of styles and what params will have what effect
on them can be found in the Style Reference later in this chapter.

Using Styles
It's time that we create our first dialog. (%first-vid.r)

view | ayout |

across
| abel italic font [color: brick] "To:"
tab
inp-to: field
return
| abel italic font [color: brick] "Subject:"
tab
i np-subj: field
return
i np-text: area
return
button "Send" |

foreach addr parse inp-to/text ",;" |

send to-email addr
rejoin [inp-subj/text newine inp-text/text]
]

qui t
]
]

The words inside the block are parsed by | ayout for valid VID words and then interpreted
to create a set of faces which themselves are displayed with vi ew. | abel , ar ea and

but t on arethe stylesin thisexample. The "To:" after the first label is afacet that tells the
label what text to display. i np-t o (and the other inp- words) are normal REBOL words that
hold areference to the style after them. Soi np-t o/ t ext can be used to access the text
attribute of the input field right after t 0. Much the same way as a string after a style setsthe
text to be displayed, a block of REBOL code sets the action that should be performed if the
styleis clicked. We see that adding stylesto alayout is very easy and customizing these styles
with facetsis easy, too as long as we know what facets can be applied to which styles.

50

Fortunately most of the facets can be applied to al styles. A complete list of stylesand
applicable facets follows, again, in the reference at the end of this chapter.
across,returnandt ab are keywords rather than styles that affect the placement (or
something different) of the styles.

Custom Styles
If you see yourself writing the same attributes for your styles again and again like

| abel italic font [color: brick]

in the previous example, it's time to define a custom style that already has these attributes to
reduce redundancy. Use st ylI e to define a new style based on the characteristics of an
existing one plus additional attributes.

style red-1bl label italic font [color: brick]
red-1bl "To:"
red-1 bl "Subject:"

By doing so it's possible to change the appearance of the whole gui without problems, too.

Positioning

VID offers auto-layout functionality, that is we just add elements to a pane without specifying
where and VID takes care of the positioning itself. By default subsequent styles are placed
below each other but this behaviour can be changed to being placed across the GUI. Either
way theword r et ur n changes to the next column or row.

acr oss

text "1"
text "2"
text "3"
return

text "A"
text "B"
text "C
bel ow

text "1"
text "2"
text "3"
return

text "A"
text "B"

text "C'

Style Reference

document text (dark text on light background)

title title
body normal text
t ext normal text
t xt normal text
hi, ..., h5 headers 1 through 4
code source code (bold, nonproportional)
tt typewriter like text
| bl small label
video text (light text on dark background)
banner title
vt ext normal text
vhil, ..., headers 1 through 4
| abel small label
text input
field single-line text input
area multi-line text input
i nfo read-only field
buttons
but t on pushbutton
bt n rounded button*
bt n-hel p rounded help button (displays help messagebox)*
bt n-ent er rounded enter button*
bt n- cancel rounded cancel button*
t oggl e on/off button
t og rounded toggle*
rotary switch through 1/2/../n
choi ce popup selector
dr op- down dropdown*
check checkbox
radi o radio button
arrow clickable arrow
visuals
I mage image
anim animated image
I con thumbsize image with text
| ogo- bar vertical REBOL logo*
| ed indicator light
areas
backdr op scaled background
backtile tiled background
box rectangular box in the foreground
other items
progress status indicator
sl i der diding bar

51

scroller dliding bar with arrow buttons*
lists & sublayouts

panel [] simple sublayout

list [] repeated sublayout

text-1list list of text lines
event listeners

sensor listens for mouse events

key listens for keyboard events

Note: Styles marked with an asterisk have been newly introduced in /View 1.2.8.
For acomplete list of stylesin your current version of /view, query the system object. Also,
have alook at %ovid-inspect.r

>> styles: skip systemview vid/vid-styles 2
>> forskip styles 2 [print styles/1]

52

53

Exercise Programs Il

Aswe' ve now covered almost every aspect of creating GUIswith VID, it istime for you to
see what you have learned by creating own GUIs.

14. Write aREBLET that displays a box for every predefined color. If abox is clicked,
the color should be printed in decimal tuple (rrr.ggg.bbb) and hex (#\RRGGBB) form
inside a big box that has the selected color as background. (%ocolor-select.r)

colors: copy []
words: first system words
forall words [
if tuple? get/any in systeniwords words/1 |
append col ors words/ 1

]
]

15. Create a dialog with which you can send emails. (%omail-dig.r)
16. Display the number of days between now and your birthday. (%odays-to-go.r)

Draw

This chapter covers rendering of graphics primitives such aslines, polygons and circles. Itisa
good idea to read the chapters on REBOL/View in general and the layout description dialect
VID first as these are very good sources for getting a decent grasp of the details behind /View.

REBOL /view was designed for displaying user interfaces and presentations and was
optimized for combining multiple graphical elements such asimages, text, buttons, and
effects. Although it was not intended for low level graphics, such as rendering bitmaps, lines,
or polygons, it is capable of drawing basic shapes with avariety of attributes. As aready
mentioned earlier, al visual elementsin /view are made up of faces. One important attribute
of those faces s their effect block, which holds effect words. A very important and powerful
word in the effect dialect isdr aw.

Draw is another dialect of its own which is capable of rendering basic shapes and will be
examined in detail in this chapter.

The draw dialect isvery similar to VID which we aready know. It consists of words that
specify how the following values should be interpreted (ie. | i ne) and the values that actually
specify the primitive (ie. coordinates).

line 10x90 50x10 90x90
| i ne 25x50 75x50

Here we draw two linestrips that look likean *A’.

The examplesin this chapter are dr aw code only and must be encapsulated within adr aw
block inside ef f ect of aface.

The most important thing you need to know from VID is that you can't draw just anywhere.
The draw dialect inside faces' effect blocksis currently the only method of drawing primitives
in /view. So thefirst thing you need to create is aface as your drawing canvas.

>> view | ayout |
origin 0xO0
box white 400x300
effect [
draw |
; draw code goes here

]
]

In the previous example the white box is your drawing canvas with 0x0 at the upper |eft
corner and 400x300 at the lower right.

If you are not familiar with VID concepts, use this function to conveniently test the draw
examples

>> draw. func ["draws basic shapes with draw dial ect”
draw code [bl ock!] /size s][
if not size [s: 100x100]
vi ew | ayout conpose/ deep |
origin 0Ox0
box white s
effect [
draw [(draw code)]

]
]
]

>> draw [pen black [ine 100x100 0OxO0]

Draw Dialect Words

line draw aline

polygon draw a polygon

box draw arectangle

circle draw acircle

pen set foreground and background color
fill-pen set foreground and background fill colors
line-pattern set the line pattern

flood fill from a point outward

image insert an image

text draw text

font specify text font attributes

55

56

Drawing in Detalil

Lines

The line command draws a line between two given points. Points are given as pair! values
where 0x0 is the upper left corner and values are increasing to the lower right (fourth quarter
in standard cartesian coodinate space). If more points are given, multiple lines are drawn
connected but the linestrip is not closed (as with polygon).

Thelineisdrawn in the current pen color using the current line-pattern.

i ne OxO0 20x20 40x0

Polygons

For simple examples drawing polygons seems to be equal to drawing lines except that the last
point is connected back to the first. With filling however, the difference becomes apparent:
Polygons describe areas rather than linestrips.

Polygons are always filled with the current fill-pen.

fill-pen gold
pol ygon 10x100 50x10 90x100 50x75

Bugnote: Inversion 1.155.2.3 of View and VID (check at startup), polygons lose their edge
colors when afill-pen is specified. Thisis going to be fixed.

And in some cases, rendering of polygons that extend outside the bounding face may crash
during rendering the draw. This is hopefully going to be fixed, too.

Rectangles

box provides a shortcut to drawing rectangular shapes. Only the upper left and lower right
coordinates are required.

box 20x20 80x80

Circles

With ci r cl e you can draw circles by specifying the center point and the radius (which must
be an integer).

circle 50x50 40

57

Specifying Colors

We have already used thisin the preceding examples. pen sets the outline color (affects

| i ne, pol ygon, box, andci rcl e)whilefi || - pen setsthe color with which areas are

filled (affectspol ygon, box, circl e,andf | ood).

Both pens have a foreground and a background part. The foreground color isthe one which is
visible. The background color for pen is used with line-patterns as the secondary color. The

fill-pen background color has no meaning (View 1.155.2.3).

pen red bl ue

fill-pen none

line-pattern 2 4 1

[ine 10x10 90x90 90x10 10x90 10x10

A color set to none means transparent.
The pen foreground defaults to inverse face color. All other colors default to none.

Line-patterns

Line-patterns affect the rendering of outlines for line, polygon and box (not circle!). The
parameters are lengths of line segments that are alternately drawn in foreground color or
omitted (that is, drawn in background color). Up to eight lengths may be specified. After that
the pattern repeats itself.

pen navy none
line-pattern 4 4 1 4 ; dash-dot
box 10x10 80x80

line-pattern ;solid again
box 20x20 90x90

| i ne- patt er n without parameters sets the style back to a solid line.
Bugnote: Inversion 1.155.2.3 of View and VID (check at startup), a bug with background
colors and line-patterns was discovered.

Filling areas

With f | ood you flood fill the area around a given point with the fill-pen foreground color
until any other color is reached.

pen sky

fill-pen white

i ne 20x30 50x80 80x30 20x30
| i ne 20x65 50x15 80x65 20x65
fl ood 50x50

58

Y ou can also specify aborder color. Then the flood fill stops at no color but the specified one.

pen sky

fill-pen white

i ne 20x30 50x80 80x30 20x30
pen | eaf

| i ne 20x65 50x15 80x65 20x65
fl ood 50x50 | eaf

Adding Images
Adding images to faces can also be donein the draw block. (if you want the face to be

completely covered by an image, it's better done directly in VID). The syntax for adding
imagesis asfollows

image pos [pair!] image [image!] Zransparent-key [tuple! integer!]?

which adds the image at the given position. The optional third parameter specifies the color
that should be rendered as transparent. If the transparent-key is atuple! thiscolor is
considered transparent. If it'san integer!, all colors with alower lumavalue are drawn
transparently.

Adding Text
Adding text issimiliar to adding images.

text pos[pair!] text [string!]

inserts the text at the given position with the font settings of the face. The position resembles
the upper left corner of the text.

With thef ont word you can set the faces font from inside the draw block the same way as
you would do in VID. The color however, is affected by the pen foreground.

pen bl ack

text 10x10 “Standard”

font make face/font [nane: “Verdana” |

text 10x30 “Verdana”

font nmake face/font [nane: “Trebuchet M5 |
text 10x50 “Trebuchet M

font make face/font [nane: “Sans-serif” |
text 10x70 “Sans-serif”

The font-obj must be made of avalid f ace/ f ont object. With the nane field you can

59

select an font available on the system. If afont is not found, the standard font (Arial) is used.

>> probe face/font

make object! |
nane: "arial"
style: none

size: 12
color: 0.0.0
of fset: 2x2

space: 0xO0
align: '"center
valign: 'center
shadow. none

Working with Images

The draw part of this chapter is now finished. This last paragraph shows how to store drawn
things in offscreen images or files. This technique is not restricted to draw but rather can be

applied to all types of faces.

After creating a set of faces with layout or make face we usually viewed them, but we can

also convert all those styles, facets, font information, effect- and draw-instructionsto a plain

image.

>> |ay: layout [
origin Ox0
box white 30x30
effect [
grid 10x10 32.128. 32
draw |
pen brick
line O0xO0 30x30
line 10x0 30x20
line 20x0 30x10

>> ing: to-inmage |ay
>> | ength? nold | ay
== 744821

>> | ength? nold ing
== 5514

I mg now holds a pixel representation of the previously created layout. With save and the
appropriate refinement create avalid .png or .bmp header, you can create image files.

save/ png % ayout.png ing

60

Y ou can also create an image from scratch. For example a 2x2 image with pixels set to red,
green, blue, and yellow.

>> squares: nmake inmage! 2x2
>> squares/1: red

>> squares/ 2. green

>> poke squares 3 bl ue

>> poke squares 4 yell ow

>> view | ayout [inage squares 20x20]

The size of 20x20 is specified to stretch the image to be 20x20 pixelsin size in order to make
it more easily visible. The image, though, is still 2x2 pixels.

Single pixels can be accessed asif they were in anormal block holding the color valuesline
by line. That’s what we did with poke. Use these functions to access the pixelsin amore
common way':

>> get pi xel : func [
“returns color at given pos (0x0 is upper left)"
img [inmage!] pos [pair!]

11

]

>> setpixel: func |
"sets pixel at given pos to color (O0x0 is upper left)"
img [image!] pos [pair!] color [tuple!]

pick inmg inmg/sizelx * pos/y + pos/x + 1

11
]

poke ing ing/sizel/x * pos/y + pos/x + 1 color

61

Exercise Programs IV
Again, it'stime to get some hands-on experience by solving simple exercises.

17. Writeasimple REBLET that draws a scaled graph of values inside a block. The block
can be of any length and the values of any size - the graph should always be 400x300
in size. (Yodraw-graph.r)

18. Extend %draw-graph.r to be able to render multiple graphs. The ingoing block
consists of a color followed by ablock of values for each graph. All value blocks are
of the same length. (%odraw-graph2.r)

19. Write aREBLET that draws a pie chart from [color number] values inside a block.
The block can be of any length and the values of any size - the graph should always be
400x400 in size. (Yopie-chart.r)

20. Write a script that creates .png thumbnails for all .jpg filesin a given directory. The
size of the thumbnailsis 120 pixelsin width or height, which is smaller. The other
coordinate should be resized accordingly. Also write the size (KB) of the original
image in the thumbnails. (Y%ethumbs-make.r)

62

Effects

Theef f ect block isan attribute that every face has. Inside this block various effects can be
specified to be applied to the face. We already discussed the dr aw command inside the

ef f ect block with which you can draw lines etc. But the effect block offers many more
commands that affect the view of aface besides draw.

Applying effectsto aface is very easy - just append the word effect followed by a block of
effect dialect words that will be applied to the face in the entered order.

>> view | ayout [

origin 0x0
box bl ack 100x100 effect |
draw |
fill-pen red
circle 50x50 45
pen bl ack

i ne 50x5 50x95
[i ne 5x50 95x50
]
]
]

What followsisalist of all available effects plus a short description what the effect does and
how it isto be applied.

Scaling
fit faceisresized to fit in parent face
aspect same as fit, but aspect ratio is preserved

extend extend-offset[pair!] pixels-to-extend[pair!] stretched without affecting scale

Tiling
tile image istiled over face
tile-view image istiled over face; tile offset isrelative

to window face

Subimages

clip clipsimage to size of face (speeds up effects)
crop position[pair!] dimension[pair!] extracts specified image from face

Translation
flip direction[pair!] flipsimage in given direction
rotate degreeg[integer!] rotates number of degreesin clockwise

direction (90,180,270,360 are supported)

63

reflect direction[pair!] reflectsanimagein X,Y or both directions.
positive valuesto reflect upper/left part, negative for lower/right

Image processing

invert inverts colorsin rgb color space

lumaval[integer!] modifies brightness of image (positive
lightens, negative darkens image)

contrast degreginteger!] modifies contrast (positive inreases contrast)

brighten degree[integer!] modifies brightness of image

tint color-phasefinteger!] modifies tint of image with given color-phase

grayscae convertsimage to grayscale

colorize color[tuple!] colors an image with given color

multiply valuegfinteger! tuple! image!] multiplies each pixel with give value

difference [integer! tuple! image!] difference to each pixel is computed

blur blurs image (use multiple times)

sharpen sharpens image (use multiple times)

emboss applies emboss effect
Gradients

gradient direction[pair!] [color-from[tuple!]] [color-to[tuple!]] produces gradient
effect in given direction with optional colors

gradcol like gradient, colorizes image

gradmul liek gradient, multiplies color values
Keys

key [tuple! integer!] al values with lower lumavalue as given
integer! or with a color equal to given tuple! are considered transparent

shadow equal to key, but additionally generates 50%
drop shadow

Algorithmic Shapes
colors can be specified, edge color is used otherwise

arrow creates a equally-sided triangular shape
pointing upwards

Cross laysa X over the face

ovad leaves aoval hole over face, rest is overlayed

tab [edge-to-round[pair!]] [radiuginteger!]] [thicknesg[integer!]] [color[tuple!]]
generates button with rounded corners
grid space[pair!] drawsagrid

Handling Events

Aswe aready know how to create GUIs, it'stime that we get to know how to let them do
something useful, that is make them respond to the users' actions. Until know we did this by
appending a block of REBOL code to styles we added to our layout. This code was executed
when the user clicked the button, text, ... or triggered something we can think of asthe main
event of the control, somehow different. (ie. dragging aslider or pressing a key that was
defined as shortcut). But there are also other events that a face can react on which we are now
going to examine.

Every face has afeel object that defines how the face behaves on events. Whether the user is
pressing a key, moving the mouse or the face needs to be redrawn etc — it's the feel of the
object that determines how the event is handled.

The Feel Object

All eventsin /View are handled by only four functions which are in the feel object of every
face. These functions are:

engage: func [face action event][...]

Thisisthe real event handler for the face. It gets called when the user presses or
releases a mouse button or key on the keyboard, when atimer exceeds, ...

detect: func [face event][...]

Iscalled for every event that isintended for this face or facesthat lie inside this face
enabling you to intercept certain events to keep your GUI free of unnecessary event
processing.

redraw. func [face action position][...]
Redraw is called whenever something in the displaying of aface changes. Each time
the face refreshes, is shown or hidden this function gets called. Note that posi ti on
is not the position of the cursor but the position of the face. Only interesting with
iterated layoutslikel i st .

over: func [face action position][...]
Over is called whenever the cursor is moved over aface. Asthis happens very often,
this function should be set to none unless you really need it to not unnecessarily slow
down /View. Position tells the position of the mouse cursor relative to the upper left
corner of the window.

Every face may implement their own bodies for these functions or just set them to none. The
f ace parameter always holds the face for which the event occured. act i on isaword that
identifies the type of event like down if the mouse button has been pressed. posi ti onisa
pair! value giving coordinates. The last parameter is the event object which is of type event!

65

Event!

All eventsin /View are stored as special datatypes called event!. In order to be able to write
your own event handlers, you need to know about the event that occured. Usually, if we don't
know what fields exist in an REBOL object, we try something like hel p or nol d to seethe
objects fields — with event!s however, this does not work.

Hereistheinformation | gathered from the mailling list and various examples:

face The face in which the event occured (root pane)

type A word that describes the type of event —sameasact i on
offset Current position of the cursor relative to the root pane

key A character representing the key that was pressed (if it was akey

event). If theit was a specia key (ie F1) aword representing the keys
name is stored instead. None with non-key events.

shift alogic!, trueif the shift-key was pressed during the event

control alogic!, trueif the ctrl-key was pressed during the event

(if something ismissing or I'm plain wrong, please tell me via vpavliu@plain.at)

Engage
Asthe main event handler, engage iscalled for all eventsthat are not handled by r edr aw

or over . That is mouse events where a button is pressed or released, keyboard events and
timers.

engage: func [face action event][...]

Try this small example to get familiar with engage. It will create abox, just aswe did in the
previous /View chapters but this time we add our own f eel .

>> view new | ayout |
canvas: box ivory rate 1 feel [
engage: func [face action event]]
print rejoin ["action ="'" action]
if action = '"key |
print join event/key
]

>> focus canvas ; key events need focus
>> do-events

was pressed.”

Some actions we see: (at-)up, (alt-)down, over, away, key, time, scroll-line, scroll-page

Timers

Also note the word r at e — It specifies how many time events should be triggered per second.
Or instead of time events per second you can aso specify the intervals between two time
events by passing atime! value like 0:00:10 for every 10 seconds.

To stop atimer, thef ace/ r at e is set to none and showis called to update internal timer
settings.

66

Detect

det ect issimilar to engage interms of what eventstrigger it. But it also has the ability to
swallow events so the subfaces never get notified of eventsfiltered by det ect .

detect: func [face event][...]

Either none (the event is swallowed) or the event (passed to subfaces for further processing)
must be returned.

Redraw
Ther edr awfunction is called immediately before the face is drawn.

redraw. func [face action position][...]

It listens for three types of actions. show, hi de and dr aw.

If the GUI isdisplayed for the first time or the show command is applied to aface, the

r edr aw function of that faceis called twice — first with a show, then with adr aw message.
If the face is hidden (ie. hi de command), it receives the appropriate hi de action.

Over

Last but not least, the over function which is called whenever the mouse cursor enters or

leaves aface. You can also forcevi ewto cal over for al cursor move events by passing
theal | - over optiontovi ew. Note that this can drastically reduce performance of your

GUI.

>> view options |ayout |
box ivory feel [
over: func [face action position]]

print join either action |
"entered at"

11
"exited at”

] position

]
]

][all-over]

Inover, actionisalogic! that expresses whether the cursor entered or left the face.

67

Exercise Programs V

This chapter ends our expedition into /View. We have learned the basics of VID and how this
dialect integrates into /Views system of faces, created and modified styles, discussed the
details of effect and draw and finally put life into our interfaces. Now it’stimeto bring all this
together.

After some simple feel-only exercises, more complex ones follow for which you'll need
knowledge about /View in general and especialy /Views VID.

21.
22.
23.
24.

25.

26.

27.

Create a style for a drag-able box (%odrag-box.r)

Create adigital clock (%clock.r)

Create an analog clock (%clock-draw.r)

Write aREBLET that can be used to change a password providing two text entry
fields that display stars instead of the entered characters. The REBLET should
furthermore contain an information field that displays “the password is too short” (less
than 5 characters), “ passwords do not match” or “ passwords ok” depending on the
input in the fields. Third there hasto be an OK button that is only clickable, if the
passwords are equal and long enough. (%opasswd-dig.r)

Write an application with which the user can draw lines. If the right mouse button is
pressed, an color selection dialog (r equest - col or) should pop up to set the color
of the lines. (Yopaint.r)

Extend %opaint.r to let the user select the type of primitive to draw via a context-menu
that pops up when the right mouse button is pressed. Also provide a menu entry for
color selection in the context-menu. Primitives the user might want to draw are lines,
rectangles and circles.

F12 savesthe currently created image as .png to disk (r equest - fi | e) (Yopaint+.r)
Create an application that lets the user play around with an neuronet consisting of
simple threshold-based mccullogh-pitts cells.

A cell firesif the sum of al inputs (X; o.n) times their weights (w; (o.n) is not lesser
than the given threshold value.

sum (Xi * Wi)o.n >=th

Nodes are added via left mouse button click, can be dragged around and their
threshold value can be edited if anode is double-clicked. Assume avalue of 1 for all
weights. The inputs come from other cells that are connected to them and are either O
or 1, if the cell fires or not. The connections between nodes should be created by
dragging the lower left corner of one cell over another. If this happens, aline should
be drawn indicating the connection. Initial nodes (the ones with no inputs) can be
switched on or off.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

