
1

Creating lightweight cross-platform Applications

Viktor Pavlu
9-Jan-2003

2

FOREWORD .. 5

RESOURCES AND EXAMPLES ... 5

PART I. REBOL LANGUAGE TUTORIAL... 6

WHAT IS REBOL?.. 7

CARL SASSENRATH ABOUT REBOL ... 8
WHAT OTHERS SAY... 8

VERSIONS.. 9

RUNNING YOUR FIRST PROGRAM.. 10

SETUP ... 10
GET THE USER GUIDE... 10
TRY THIS... 10

REBOL BASICS... 12

VALUES .. 12
Datatypes .. 12

WORDS ... 13
Types of Words.. 13
Unsetting a Word .. 15
Protecting a Word ... 16

BLOCKS .. 16
CONCLUSION .. 17

CONTROL STRUCTURES .. 18

WHAT IS TRUE?... 19

SIMPLE MATH ... 20

Mathematical Words ... 20
Comparison Functions .. 21

STRINGS... 21

SPECIAL CHARACTERS.. 21

EXERCISE PROGRAMS I ... 22

USEFUL FUNCTIONS.. 22

WORKING WITH REBOL .. 22

INTERPRETER STARTUP... 23
INFORMATION PASSED TO SCRIPT ... 24

SERIES! .. 24

CREATING SERIES ... 25
RETRIEVING ELEMENTS .. 25
MODIFYING ELEMENTS... 26
TRAVERSING SERIES ... 27
OTHER SERIES! FUNCTIONS .. 28

FUNCTION! ... 29

INTERFACE SPECIFICATION BLOCK ... 29
Restricting Types ... 30
Adding Documentation.. 30
Refinements ... 31

INTERACTION WITH THE OUTSIDE... 32
Literal Arguments.. 32
Get Arguments... 32
Scope ... 33
Returning Values ... 33

3

Function Attributes.. 34
ERRORS .. 34

Error Object .. 34
Generating Errors ... 34

EXERCISE PROGRAMS II.. 36

TINY REFERENCE... 37

Console I/O ... 37
Files & Directories.. 37
Help & Debug ... 37
Evaluation ... 37
Loops... 37
Stopping evaluation... 37
Series... 37
Strings ... 38
Misc... 38

PART II. SELECTED REBOL CHAPTERS... 39

PARSING .. 40

QUICK INTRODUCTION TO BNF-LIKE GRAMMARS.. 41
BNF Symbols... 41

PARSING IN REBOL ... 42
REBOLS BNF DIALECT.. 43
PRODUCTION .. 44

OBJECT!... 45

CGI & R80V5 EMBEDDED REBOL... 45

NETWORK PROGRAMMING.. 45

WEBSERVER ... 45
INSTANT MESSENGER ... 45

XML-RPC ... 46

REBOL IDIOMS .. 47

GETTING DEFAULT VALUES... 47
REDUCING COMMON SUB-EXPRESSIONS.. 47

PART III. REBOL/VIEW.. 48

VID... 49

STYLES ... 49
USING STYLES .. 49
CUSTOM STYLES... 50
POSITIONING... 50
STYLE REFERENCE.. 51

EXERCISE PROGRAMS III .. 53

DRAW ... 54

DRAW DIALECT WORDS ... 55
DRAWING IN DETAIL .. 56

Lines.. 56
Polygons.. 56
Rectangles ... 56
Circles ... 56
Specifying Colors .. 57
Line-patterns ... 57
Filling areas .. 57
Adding Images... 58
Adding Text ... 58

WORKING WITH IMAGES ... 59

4

EXERCISE PROGRAMS IV .. 61

EFFECTS .. 62

SCALING ... 62
TILING .. 62
SUBIMAGES... 62
TRANSLATION... 62
IMAGE PROCESSING... 63
GRADIENTS... 63
KEYS .. 63
ALGORITHMIC SHAPES.. 63

HANDLING EVENTS ... 64

THE FEEL OBJECT... 64
EVENT! ... 65
ENGAGE.. 65

Timers ... 65
DETECT... 66
REDRAW ... 66
OVER .. 66

EXERCISE PROGRAMS V.. 67

5

Foreword
This is the accompanying tutorial to the REBOL course I held during 2002/2003 at the
technical college HTL Spengergasse in Vienna. As class time was very short I had to put as
much useful information in this book to make it possible for the students to follow the fast
pace of my lessons by studying at home. At the same time it should comprise all essential
information on REBOL into a single document.

Resources and Examples
During the text you will often find references to files like %filename.r. These point to scripts
that can be found online at http://plain.at/vpavlu/REBOL/examples and are not included in the
printed tutorial.
Source code of examples and sample solutions for all exercise programs can also be found
online at http://plain.at/vpavlu/REBOL/examples/.

Source code throughout the tutorial that has a >> prompt in front can be directly entered into
the console. If the prompt is missing, the code is some specific kind of dialect and thus needs
to be passed to a function which understands that dialect (ie. VID code must be passed to
layout). What to do with the code is pointed out directly in the chapters.

6

PART I. REBOL language tutorial
The first part makes you familiar with REBOL concepts and terms, summarizes all language
elements and provides a profound starting ground for own programs and the following
specialized chapters.

7

What is REBOL?
REBOL is a free, cross platform, highly reflective, flexible, compact, interpreted language
that optimally fits the needs of daily programming tasks – especially network/Internet related
tasks. REBOL was designed by Carl Sassenrath, the software architect responsible for the
Amiga OS. REBOL was first released in 1997 and since then there have been many
improvements. In 2002 REBOL was even listed as nominee for the Webby awards for
technical achievement, nevertheless it's still rarely known.
REBOL stands for "Relative Expression Based Object Language". Let's look at some terms in
this paragraph in more detail:

free
REBOL is not free in terms of "Free Software" (www.fsf.org), but it's free in
that you don't have to pay for the interpreter as long as you don't want to sell
your programs.

cross platform
Currently interpreters for 42 platforms exist. Scripts designed for Win32 can
also be run on a UNIX platform (or on the other platforms for which an
interpreter exists) without modification.

highly reflective
the specification of all functions (and other words) can be obtained and
manipulated during run-time.

flexible
Everything in REBOL is a "word". There are no differences between control
structures, functions, variables and so on like there are in most other languages.
For example you could redefine the word IF that it no longer acts as the
conditional expression we are used to.

compact
The interpreter for the /Core language weighs in at 250KB, the graphical
interpreter /View is about 500KB in size and even more compact versions
exist.

interpreted
REBOL programs are not compiled to binary instruction codes but rather
remain in their source form. The interpreter takes this source code and executes
it.
In recent times REBOL Technologies (the company behind REBOL)
developed a REBOL compiler. This is not a real compiler per definition in that
it takes the source and translates it to binary instruction codes but rather a
program that produces a standalone interpreter that includes a encapsulated
version of your source which still remains interpreted.

8

optimally fits daily Internet programming tasks
Interacting with the Web is very easy:

page: read http://www.htl-tex.ac.at/
send vpavlu@plain.at page

This two line example reads a document from the WWW and sends it to the
given email address.

relative expression
The words in REBOL (everything, as we already know (see flexible)) have
special meanings depending on the context in which they are. copy used with
a string, makes a copy of the string, whereas copy used with a port does not
replicate the port but retrieves it's currently available data. More on the details
of strings and ports later – just remember that there is no single defined
meaning for a word but rather a unlimited set of things a word can stand for,
depending on context.

Carl Sassenrath about REBOL
[...] REBOL is not a traditional computer language like C, BASIC, or Java. Instead, REBOL
was designed to solve one of the fundamental problems in computing: the exchange and
interpretation of information between distributed computer systems. REBOL accomplishes
this through the concept of relative expressions (which is how REBOL got its name as the
Relative Expression-Based Object Language). Relative expressions, also called "dialects",
provide greater efficiency for representing code as well as data, and they are REBOL's
greatest strength. For example, REBOL can not only create a graphical user interface in one
line of code, but it can also send that line as data to be processed and displayed on
other Internet computer systems around the world.

The ultimate goal of REBOL is to provide a new architecture for how information is stored,
exchanged, and processed between all devices connected over the Internet. Unlike other
approaches that require tens of megabytes of code, layers upon layers of complexity that run
on only a single platform, and specialized programming tools, REBOL is small, portable, and
easy to manage.[...]

-- Carl Sassenrath

What others say
This, like the Amiga and BeOS, could be another doomed computer language that should
have ruled the field. It probably came along five years too late. REBOL is a fully network-
aware relative expression based object language. Take a dash of PERL, mix with the cross
platform compatibilty of a Java, and make it extremely easy for beginners to start coding, and
you get the general idea. REBOL has all kinds of cool potential, but until a deep and wide
developer/user community gets built, and until it finds its niche in an already crowded
language marketplace, it's probably doomed to obscurity. As a startup, finding the funding is
going to be problematic in an environment where instant results are called for.

-- turksheadreview.com

9

Versions
Currently three versions of REBOL exist:

• /Core The core language. Console version, free
• /View Extends /Core with GUI features, free
• /Command "Server" edition. Provides access to the underlying System,

offers database connectivity, FastCGI support and RSA
encryption among other features.

• /View/Pro Adds sound to /View

In recent times there were so called REBOL kernels developed. That is smaller versions of
the interpreter which only implement the most critical functions of the language. This results
in reduced overhead and much faster startup times as you only include the words you know
you are going to use.

• /Base Kernel that implements /Core functionality
• /Pro Adds command features to /Base
• /Face Adds graphics and sound to /Pro

Furthermore there is the REBOL/SDK to be released this week (12-Dec-2002). Not a real
REBOL version, rather a kit of development tools comprising the kernels, the "compilers"
(/Enbase, /Enface and /Enpro) and PREBOL, REBOLs preprocessor.

REBOL/IOS is not part of the language tools but an application based on REBOL offered by
REBOL Technologies that enables its users to exchange data, co-work on projects and
simultaneously use REBOL programs.

Read more about the REBOL language in general at
http://www.rebol.com/index-lang.html

http://www.rebolforces.com/

http://www.codeconscious.com/rebol/

http://www.rebol.com/bio-carl.html

10

Running your first program

Setup
In the first part of this text we only look at the core functionality until we get a reasonable
grasp of REBOL. The free /Core interpreter is suited perfectly for our needs. If you want to
download /View instead of /Core, that's ok but you won't experience any advantages over
/Core users.
Get a copy of the interpreter for you platform from www.rebol.com and start it. Answer the
questions and we are done with setting up.
If you are experiencing problems with the /View setup because of limited access, close the
application window with the button in the upper right corner – the installation will quit but
leave you a REBOL console capable of /View commands.

Get the User Guide
Download the REBOL/Core User Guide (http://www.rebol.com/docs/core23/rebolcore.html).
A great resource if you have to look something up. Reading the whole book takes a while – I
know, I did. But to start working with REBOL you don't have to do it – this brief tutorial
should suffice.

Try this...
Open the interpreter and try some REBOL snippets. >> is the console prompt and mustn't be
entered.

>> print "Hello, world"

>> str1: "Hello,"
>> str2: "world"
>> print [str1 str2]

>> loop 10 [prin "*"]

>> loop 10 [print "no tv and no beer make homer go crazy"]

prin is not a typo. It does exactly what print does: printing a text to the console. But
prin does not automatically append a line break.

>> help prin
>> help print

>> i: 20
>> proc: print ["i =" i]

Here we have seen that a word followed by a colon as proc: assigns the word the following
value. But when we tried to assign print to proc it failed as the interpreter immediately
executed print and as print does not return a value, there is nothing for proc to be set
to.

11

To give proc the meaning we want it to have – being a procedure that prints the value of i –
we have to prevent the interpreter from immediately executing the word print and rather
return the value print to proc. This is done by enclosing the words with square brackets.

>> proc: [print ["i =" i]]
>> source proc
>> repeat i 10 proc

SOURCE shows the code that created proc, so now we know that proc hold the right value.
When we put proc in a loop that continuously incremets i, we get the result we've asked for.
Putting REBOL code in brackets prevents the interpreter from immediately executing it.

12

REBOL Basics

Values
The REBOL language is built from three things: values, words and blocks. In this chapter we
have a close look at the values.

A value is something that stands literally there. 42 for example. A number that has the value
42. Another example would be "that's ok, my will is gone". This time it was a
string. One last example: $0.79. Money as we would guess (and we are right).

>> type? $0.79
== money!

We have seen that there are many different types of entering values literally depending on the
type of data. 42 is a number whereas "42" would be a string. So values have different types
of data or datatypes. Similar to other languages where you have datatypes like char, int, and
float. In REBOL however not the variables have the datatypes but the values themselves. This
is very important.

Datatypes
Datatype Example

integer 1234
decimal 12.34
string "REBOL world!"
time 15:47:02
date 12-December-2002
tuple 192.168.0.16
money EUR$0.79
pair 640x480
char #"R"
binary #{ab82408b}
email vpavlu@plain.at
issue #ISBN-020-1485-41-9
tag
file %/c/rebol/rebol.exe
url http://plain.at/vpavlu/
block [good bad ugly]

To convert between datatypes, use one of the existing to-type! functions. Type

>> help to-

in the console to get an overview of conversion functions.
For a more thorough examination of different datatypes and what you can do with them skim
through the chapter Values in the Appendix A of REBOL/Core User Guide.

13

Words
The second important thing in REBOL are words. Words are like variables but they go a bit
further. A variable can hold a value – words can, too. In C for example, if, for and printf() are
not a variables; you can't change the "value" of an if in C. In REBOL everything not being a
block or a value (which stand literally there) is a word and thus can be assigned a value.

>> num: 12
== 12
>> if: "some string"
== "some string"

You have just redefined the word IF. This is not a good idea unless you know exactly what
you are doing because from now on, at every place where there is an IF it no longer checks
the word immediately after it for being true and if so, executing the following block (that's
what if usually does: conditional evaluation) but evaluates to "some string" which will change
the behaviour of programs drastically.

Words do not have datatypes. Any word can hold any value and no declaration is required.
Just assign a word a value. If you try to evaluate a word that has no value assigned (that has
no meaning to REBOL), the interpreter will report an error.

>> print foobar
** Script Error: foobar has no value
** Near: print foobar

Though there a no datatypes for words, there do exist different types of words. (Don't get
confused with that – it's easy)

Types of Words
Type Example Purpose

word var evaluate to it's value (interpret the word)
get-word :var get the value behind var
set-word var: set var to a new value
lit-word 'var the word literally

Words return the interpreted value behind the word. If the value is a number, this yields the
number. If the value is a string, this yields the string. If the value is a function, this yields the
result of the executed function.

14

Get-words return the value behind the word. This is similar to the previous paragraph in many
cases, however with functions for example the result differs. Not the interpreted function but
the function itself is returned.

>> func1: now
== 12-Dec-2002/15:21:15+1:00
>> func2: :now
>> wait 0:01 ;1 minute
>> func1 ;holds interpreted 'now
== 12-Dec-2002/15:21:15+1:00
>> func2 ;holds 'now
== 12-Dec-2002/15:22:15+1:00

First we assigned FUNC1 the value of now (NOW returns the current date/time value),
secondly we assigned FUNC2 the value behind now (NOW itself). This can be proven by the
following lines:

>> source func1
func1: 12-Dec-2002/15:21:15+1:00
>> source func2
func2: native [
 "Returns the current local date and time."
 /year "Returns the year only."
 /month "Returns the month only."
 /day "Returns the day of the month only."
 /time "Returns the time only."
 /zone "Returns the time zone offset from GMT only."
 /date "Returns date only."
 /weekday {Returns day of the week as integer}
 /precise "Use nanosecond precision"
]

Set-Words don't need any further explaination. A world followed by a colon sets it to the
following value and returns this value.

>> print a: "REBOL"
REBOL
>> a
== "REBOL"

15

Lit-Words are a way to literally specify a word. The words name itself is the value of a lit-
word.

>> dump: func [word][
 either value? word [

 print [word "is" get word]
][
 print [word "is undefined"]
]
]

>> a: 42
== 42

>> dump 'a
a is 42
>> dump 'b
b is undefined

Here we passed the lit-words to a function that tests whether a word is defined (has a value).

>> set 'name "REBOL" ;same as name: "REBOL"
>> get 'name ;same as :name

Unsetting a Word
By unsetting a word you take the previously assigned value from it. The value of the word is
from then on undefined. Evaluating unset words yields an error.

>> word: $100
== $100.00
>> print word
$100.00
>> value? 'word
== true
>> unset 'word
>> value? 'word
== false
>> print word
** Script Error: word has no value
** Near: print word

16

Protecting a Word
If a word is protected, trying to assign it a new value produces an error. This can be used to
prevent some words from being mistakenly redefined. It is, however, no guarantee that none
of your functions can change it's value because a call to UNPROTECT makes the word accept
values again.

>> chr: #"R"
== #"R"
>> protect 'chr
>> chr: #"A"
** Script Error: Word chr is protected, cannot modify
** Near: chr: #"A"
>> unprotect 'chr
>> chr: #"A"
== #"A"

Blocks
The third thing used in REBOL among values and words are blocks. This chapter introduces
Blocks in a short manner – more detail follows in the chapter Series!.

As we already saw in the introductory example, blocks are made of square brackets with zero
or more elements inside and the elements inside the block are prevented from evaluation.
Blocks can be of any size and depth and their elements of any type.

>> colors: [red green blue]
== [red green blue]
>> data: [now/date colors [colors $12] 4]
== [now/date colors [colors $12.00] 4]

All of them are valid blocks. The first one consists of three (maybe undefined) words. That
the words might be undefined is not a problem because the interpreter does not look inside the
block until you tell to. This is sometimes required – as in the fourth line where we want to
have the previously defined blocks as elements of this block, rather than the words.

>> do [now/date colors [colors $12] 4]
== 4
>> data: reduce [now/date colors [colors $12] 4]
== [12-Dec-2002 [red green blue] [colors $12.00] 4]

DO evaluates the block and returns the last resulting value. REDUCE also interprets the block
but returns all results in a new block. This is often needed to pass complex arguments to
functions.
Both words tell the interpreter to do evaluation inside the given block. If this block contains
further blocks however, they are not evaluated. That's why the colors inside the inner block
are still unevaluated.

17

>> compose [now/date (now/date)]
== [now/date 12-Dec-2002]

compose is a reduce limited to values inside parentheses which is sometimes useful to create
blocks that contain code and data.

Word Example Result

reduce [1 2] evaluates block, returns block of results
remold "[1 2]" returns a string that looks the same as the result from reduce
reform "1 2" reduced block converted to a string
rejoin "12" a string containing all results joined together
compose [1 2] evaluates only words in parens inside a block

Conclusion
As there are only three types of information in REBOL (values, words and blocks) used for
everything from variables, control structures, functions and data – there is no real difference
between code and data in REBOL. All there is are words with a predefined meaning (value)
that describe the language.
And this language is the subject of the rest of the first part.

18

Control Structures
As in (almost) every other programming language there are control structures in REBOL as
well. Control structures are program statements that control the flow of the program.
The following lines compare REBOLs control statements with those known from C++ (or
related languages)

do [...] {...}
DO evaluates the block. Or a string, or a file, …

if expr [...] if(expr) {...}
The block is only executed if the expression evaluates to something true.

either expr [...][...] if(expr) {...} else {...}
If the expression evaluates to true, the first block is executed, the second block otherwise.
Note that there is no else in REBOL.

while [expr][while(expr){

] }
While is the only control statement that has its condition inside a block. If more than one
condition is found inside the condition block, all conditions must be met in order to have the
loop executed.

for i 1 10 2 [for(i=1;i<=10;i+=2){

] }
For sets the given variable to the initial value (1 here) and executes the block. Then the
increment (2 here) is repeatedly added to the variable and the block executed as long as the
variables value is not greater than the limit (10 here). Note that i has no value after the
execution of the loop.

until [do {

 expr ...
] } while(expr);
Until takes the following block and keeps evaluating it as long as the last word evaluates to
true.

loop 10 [...] // N/A in C++
Repeats the passed block 10 times.

repeat i 10 [...] for(i=1;i<=10;i++) {...}
Increments i from 1 to 10 and evaluates the block for every i.

forever [...] while(1){...}
A loop that never ends. Most times a BREAK is found inside this loop so that it is left again.
BREAK can be used to exit all kinds of loops.

19

switch/default var [switch(var){
 1 [...] case 1: ... break;
 2 [...] case 2: ... break;
][...] default: ...

}
Switch compares the observed value var with all its labels and if one matches, the code
following the label is executed. If none matches and there is a default block, that block is
executed. The /default refinement tells the interpreter that there will be a default block.
In REBOL we would express this behaviour with some code similar to this:

switch: func [var cases /default case][
either value: select cases var [do value][

either default [do case][none]
]

]

By entering source switch we can verify this assumption. The process of creating own
functions is explained in the chapter function! later in this text.

What is true?
Every word that evaluates to something different from false or none is considered true.

>> if 0 [print "this is important!"]
this is important!

Logical functions to make more complex conditions are
NOT a inverts the result of a
a AND b logic: true if both are true, false otherwise
a OR b logic: false if both are false, true otherwise
a XOR b logic: true if exact one is true, false otherwise

What AND, OR and XOR return their two values joined using the operator (bitwise). Shortcut
functions for ORing or ANDing a list of words are as follows:

all [] none on the first word that evaluates to false, last value otherwise
any [] returns the first value that evaluates to true, none otherwise

20

Simple Math
Mathematic expressions are strictly evaluated from left to right. No operator priority is
known, so you have to enclose the things you want to compute first in parentheses.

>> print 5 + 5 * 4
40
>> print 5 + (5 * 4)
25

Note that while there is no priority among the operators, operators take precedence over
functions. That is the reason why print 5 was not the first thing to be evaluated and the
maths performed on the result (which would be kind of awkward)

Mathematical functions in REBOL can be applied to a wide range of numerical datatypes
which consist of Integer! (32bit numbers without decimal point), Decimal! and Money! (64bit
floating points), Time!, Date!, Pair! and Tuple!.

Mathematical Words
Operator Word Purpose

+ add two words added
- subtract second subtracted from first
* multiply two words multiplied
/ divide first divided by second
** power first raised to the power of second
// remainder remainder of first divided by second

exp value evalue

log-10 value log10 value
log-2 value log2 value
log-e value loge value, ln value
square-root value vvalue

absolute returns absolute value
negate changes sign of value

min a b returns lesser of two values
max a b returns bigger of two values

sine trigonometric sine in degrees
cosine trigonometric cosine in degrees
tangent trigonometric tangent in degrees
arcsine trigonometric arcsine in degrees
arccosine trigonometric arccosine in degrees
arctangent trigonometric arctangent in degrees

21

Comparison Functions
Operator Word Purpose

= equal true if values are equal
== strict-equal true if equal (case-sensitive) and of same type

strict-not-equal true if not equal (case-sensitive) or different
types
=? same? true if referencing the same value
<> true if values are different
> greater true if left is greater
< lesser true if left is lesser
>= greater-or-equal true if left is greater or equal
<= lesser-or-equal true if left is lesser or equal

Strings
Strings in REBOL are a one of the series! datatypes which is covered later in more detail. To
get a better grasp of what strings are about wait for the series! chapter. For now it's sufficient
to know that strings are written enclosed in "double quotes" or {curly braces} and to have a
look at these functions

trim str remove surrounding whitespace
uppercase str convert to UPPERCASE
lowercase str convert to lowercase
compress source compresses a string
decompress source decompresses a compressed string
append str value append to a string
length? str returns length of string
parse str delim splits a string into tokens, delimited by delim

Special Characters
^" "
^} }
^^ ^
^M carriage return
^(line), ^/ linefeed (=newline)
^(tab), ^- tab
^(page) new page
^(back) backspace
^(del) delete
^(null), ^@ \0, ASCII NULL character
^(escape), ^(esc) escape character
^(letter) control characters (#"^A" to #"^Z")
^(xx) ASCII char by hexadecimal number

Note also the predefined words escape, newline, tab, crlf and cr.

22

Exercise Programs I

This chapter offers you some easy problems you can solve with the REBOL knowledge you
have acquired by now. Try to solve some of the example problems. Source code of sample
solutions for all programs can be found online at http://lain.at/vpavlu/REBOL/examples/.

Useful Functions
read source returns the string read from source (file, url, …)
write dest data writes data to destination (file, url, …)

ask question prompts the user the question, returns entered string
input read a line from the console

to-integer value converts value to an integer
to-date value converts value to a date
to-file value converts value to a filename

prin data prints data without line break
print data prints data, appends line break

foreach act list [...]
executes the block for every element in list. act is set to the current
element each time

now returns current date/time

1. Save the source of http://www.rebol.com to a file named %rebol.html (%http-save.r)
2. Print the greatest of three numbers stored in a, b and c. (%abc-max.r)
3. Write a program that repeatedly asks the user for numbers and responds with the

newly computed average value. (%avg-dlg.r)
4. Write a program that computes the average of a block of numbers. (%avg-blk.r)
5. Write a substring function that accepts a string and one parameter, the start offset

inside the string. Provide an additional refinement called len to limit the length of the
extracted substring. (%substr.r)

6. Compute the number of days since your birthday. (%age-days.r)
7. Scramble a string using ROT-13. Read the string from a textfile and print the

scrambled result to the screen. Used in Newsgroups to prevent accidental reading of
content. With ROT-13 characters from A to Z have numbers 1 to 26. When encrypting
data, every character is replaced by the character that has its value plus 13 added. So A
becomes N. If a value is beyond 26, start again at A. So N (14) plus 13 (27) would be
A again. As we see, encryption and decryption is the same in ROT-13. (%rot13.r)

Working with REBOL
As REBOL is an interpreted language, programming with REBOL is somewhat different to
programming in C++ or Java. It is more like a dialog with the console than constructing code

23

which is then compiled. If you don't know how something worked, type a small example into
the console to remind you or ask REBOL for help by typing help word.
Two methods of executing REBOL code exist

1. typing directly in the console – easy and best suited for one-liners
2. creating and executing scripts – use an editor to write a script and execute it from the

interpreter

For the latter method you need to create a valid REBOL script which consists of a REBOL
header and some code.

REBOL []
;add code here

This is a minimalistic version of a REBOL script file with an empty header and no code.
Open a new file, add the following lines and save as hello.r.

REBOL [
 title: "script example"

 author: "vpavlu"
 date: 12-Dec-2002
 version: 1.0.0
]
print "hello world"

Then, in the console enter

>> do %hello.r
Script: "script example" (12-Dec-2002)
hello world

and the script file is evaluated, assuming the interpreter runs in the same directory as the file
was created, so it can read %hello.r.

Interpreter Startup
When the interpreter has finished startup, it tries to evaluate the files rebol.r and after that
user.r. rebol.r is overwritten with every new release of REBOL so you shouldn't use it for
your settings as they might get lost. User-defined settings can be stored in the user.r file. Your
email settings for example.

>> set-net [vpavlu@plain.at mail.plain.at]

24

Information passed to Script
You can add information about a script to the header. View probe
system/standard/script to see all valid fields for a header. If the script is run, the
information from the header in the file can be accessed through
system/script/header.

system/script/args arguments passed to a script via the commandline (or via
drag'n drop, if a file gets dropped over your script) can be
accessed through this string

system/script/parent holds the system/script object of the parent script (a
script that called this one), if any

system/script/path the path the script is evaluated in

system/options/home home directory, the path where to find rebol.r and user.r
system/options/script the filename of initial script provided to interpreter when

it was started
system/options/path current directory
system/options/args arguments passed initially to the interpreter via

commandline
system/options/do-arg string provided by --do option on command line

Series!
A series is a set of values organized in a specific order. There are many series datatypes in
REBOL which can all be processed with the same small set of functions. The simplest type of
series is a block which we already used.
Every series in REBOL has an internal index pointing to the start of the series. When working
with series this index is often changed. find for example searches for a given pattern and
sets the index to point to the first element in the series that matches the pattern. Note that
although the resulting series looks to be a completely new list as all elements before the
internal index seem to be removed, it is still exactly the same series – only the actual start of
the series is not longer at its head.

>> nums: copy [1 2 3 4 5]
== [1 2 3 4 5]
>> print nums
1 2 3 4 5
>> length? nums
== 5

>> nums: find nums 3
== [3 4 5]
>> print nums
3 4 5
>> length? nums
== 3

>> nums: head nums
== [1 2 3 4 5]

25

>> print nums
1 2 3 4 5

When saying the first value of the series you always talk of the value at the current index and
not the one at the very head of the series.

Creating Series

>> a: "original"
>> b: a
>> append b " string"
>> print a
original string

Assigning series to a word is always done by reference. So the word b is in fact a new word
pointing to the same data as a. If you want them to use different strings use B: copy a.
Note that this applies to values, too. It the previous example the value "original" (in the first
line) is changed to "original string" as well. To avoid unexpected behaviour, remember to use
copy.

>> f: func [s][
 str: ""
 print append str join s ", "
]
>> loop 3 [f "A"]
A,
A, A,
A, A, A,

>> f: func [s][
 str: copy ""
 print append str join s ", "
]
>> loop 3 [f "A"]
A,
A,
A,

copy series copies a series. don't forget to copy!
array size creates a series with given size
make block! len creates a block! with given size

Retrieving Elements
pick series index gets element at given index
series/1 gets element at given index
first series gets first element (second, third, fourth, fifth as well)
last series gets last element
copy/part series nElem returns copy of first nElem elements

26

Modifying Elements
Be careful with modifying elements in a list that is referenced by more than one word as both
words are pointing to the same data.

>> str: "this is a long string"
== "this is a long string"
>> pos: find str "long"
== "long string"
>> remove/part str 5
== "is a long string"
>> pos
== "string"

With change you can overwrite the element at the current index with a new value. If the
new value is itself a series, all the elements are used to overwrite values in the list, starting at
the current index.

>> nums: [1 2 3]
== [1 2 3]
>> print nums
1 2 3
>> change nums 3
== [2 3]
>> print nums
3 2 3
>> change nums [5 4]
== [3]
>> print nums
5 4 3

insert series value inserts at current position
append series value inserts at end
change series value changes first value in series to given value
poke series index value changes the element at (current index + index) to value
replace series search replace searches for a value and replaces it
remove series removes at current index
clear series removes all elements

27

Traversing Series
Modify the internal index to traverse over a series. This is done with the following functions.

next series returns series at next element
back series returns series at previous element
at series offset returns series at given offset (+/-) relative to index
skip series offset returns series after given offset (+/-) relative to index

head series returns series at very beginning
tail series returns series at end (after last element)

>> nums: [1 2 3]
== [1 2 3]
>> while [not tail? nums][
 print nums/1
 nums: next nums
]
1
2
3
== []
>> empty? nums
== true
>> print nums

>> nums: head nums
== [1 2 3]
>> empty? nums
== false
>> print nums
1 2 3

Keep two things in mind when iterating over series: First, the functions listed above do not
modify the internal index, they just return the series with modified index, so storing the result
is required (see bold line). And second, after iterating over a series you are at the end and the
series seems empty, so go back to the head.

There are also predefined words for this kind of loop

forall series [] does same as loop above
forskip series nElem [] iterates over a series, skipping nElem elements
foreach word series [] iterates over series, word holds current element
remove-each word series [] like foreach, removes curent element if block is true

Foreach is different to the other two functions. The current element needn't be accessed
through series/1 but is stored in word each time the block executes and the internal index
is not at the end after running a foreach loop. remove-each acts similar but also
removes the current element from the list if the block evaluates true for this iteration.

28

Other Series! Functions
join val1 val2 returns the two values joined together
form value returns value converted to a string
mold value returns a REBOL readable form of value (easy to load)
do block evaluates block, last value returned
reduce block evaluates block, block returned
rejoin, reform, remold evaluates block, join/form/mold applied to result

sort series sorts a series
reverse series reverses order of series

find series value returns series at position of value or none
select series value returns the value next to the given value
switch series value does the value next to the given value

length? series returns number of elements
tail?, empty? series return true if series is at is empty (= is at its tail)
index? series returns offset inside series

unique series duplicates removed
intersect seriesA seriesB values that occur in both series
union seriesA seriesB series joined, duplicates removed
exclude seriesA seriesB seriesA without values in seriesB
difference seriesA seriesB values not in both series

29

Function!
A function is an optionally parametrized set of instructions that returns exactly one value. We
already kept instructions in a block for later execution. This can be said to be a simple form of
a function with no parameters

>> i: 7
>> dump-i: [print ["i =" i]]
>> do dump-i
i = 7

dump-i is not a real function, though as it still requires do to be evaluated.

>> dump-i: does [print ["i =" i]]
>> dump-i
i = 7

>> dump-i: func [][print ["i =" i]]
>> dump-i
i = 7

Here we have created real functions. The first one used does to produce a function value
which is then assigned to dump-i, whereas the second snippet used func to do that. The
difference between these words is the number of arguments they require. FUNC needs two
blocks, the first to specify the arguments of the function and the second for the code. does is
a shortcut for creating parameterless functions so the first block is omitted.
A third word for function creation exists: function, which accepts three blocks. The first
for specifying arguments, the second to define local words and the third is for code.

Interface Specification Block
The first block func expects is called the interface specification block. A block that
describes the parameters and refinements for the function and documents the function. In the
simplest form its just a block of words representing parameters to the function.

>> dump: func [var][print ["value =" var]]
>> dump j
value = 7
>> dump 42
value = 42

By using parameters we can apply this function to all values we like to, not only i as in the
previous example. We lose, however the additional information of the variables name in the
output.

>> dump: func [name value][print [name "=" value]]
>> dump "j" j
j = 7

30

Though the function is not very useful any more and is kind of redundant, it does what we
want it to.

Restricting Types
Sometimes it's required to limit the types of the arguments passed to a function. For example
you can't do anything useful if you want to compute the area of a circle and instead of an
integer representing it's radius you get the current time.
You can restrict the valid types of an argument by writing a block of valid types behind the
according parameter.

>> dump: func [
 name [string! word!]
 value
][
 print [name "=" value]
]
>> dump j "j"
** Script Error: dump expected name argument
 of type: string word
** Near: dump j "j"

If a argument of illegal type is passed, the interpreter will report an error.

Adding Documentation
Though it's not required for a function to perform correctly, it's good practice to document
your functions inline, so that users can get information about them when typing help
funcname. This is done by adding strings to the specification block. The first string describes
the function itself. And after every parameter (or refinement) there can be a descriptive string
as well.

>> dump: func [
 "Prints name and value of a word"
 name [string! word!] "name of word"
 value "value of the word"

][
 print [name "=" value]
]

 >> help dump
USAGE:
 DUMP name value

DESCRIPTION:
 Prints name and value of a word
 DUMP is a function value.

ARGUMENTS:
 name -- name of word (Type: string word)
 value -- value of the word (Type: any)

31

Refinements
Refinements can be used to specify variation in the normal evaluation of a function as well as
provide optional arguments. Refinements are added to the specification block as a word
preceded by a slash (/).
Within the body of the function, the refinement word is used as logic value set to true, if the
refinement was provided when the function was called.

>> dump: func [
 "Prints name and value of a word"
 name [string! word!] "name of word"
 value "value of the word"
 /hex "print output in hex format"
][
 if hex [
 either number? value [

 value: to-hex value
][
 value: enbase/base form value 16
]
]
 print [name "=" value]
]
>> dump/hex "k" k
k = 000000FF
>> dump/hex "str" str
str = 746861742773206F6B2C206D792077696C6C20697320676F6E65

A refinement can also have arguments. Parameter names after a refinement are only passed if
the refinement was provided. Documenting strings can be provided to refinements as well as
refinement parameters the same as they are written for "normal" parameters.
The order in which the refinements are provided to the function upon executing it need not
match the order in which they were inside the specification block. The only thing you have to
be careful with is that the order of refinement arguments matches the order of provided
refinements.

>> dump: func [
 "Prints name and value of a word"
 name [string! word!] "name of word"
 value "value of the word"
 /hex "print output in hex format"
 /file "writes to a file"
 dest [file!] "file to write to"
][
 if hex [
 either number? value [
 value: to-hex value
][
 value: enbase/base form value 16
]
]

32

 either file [
 write/append dest rejoin [name " = " value "^/"]
][
 print [name "=" value]
]
]
>> dump/hex/file "j" j %dump.log

Interaction with the Outside

Literal Arguments
Our dump function still has a weakness: We have to pass the words name and its value to the
function.
When a function is executed, all its arguments are evaluated and passed to the function. So
dump never got j as second argument but the value behind j. And while it's impossible to get
the name of a variable if you only have its value, the other way is easy.
One way would be to pass j as lit-word so the evaluation of the literal j yields the word j,
which is passed to the function. And there we could write

>> dump: func [var][print [var "=" get var]]
>> dump 'j
j = 7

to get the desired result. But then every call to dump would require us to pass a literal which
looks kind of strange.
Another way would be to prevent an argument from being evaluated and just passed as literal.
This is done by making it a literal parameter.

>> dump: func ['var][print [var "=" get var]]
>> dump j
j = 7

Another benefit that comes with working with the same word and not only the value is that
the value can be changed inside the function affecting the word on the outside, too.

>> zap: func ['v][set v 0]
>> zap j
>> dump j
j = 0

Get Arguments
Get arguments are in the same way related to literal arguments as get-words are to lit-words.
While the literal ones return the word without evaluating it, the gets return the value behind a
word without evaluating it. For functions this would be their code instead of their return
value.

>> print-func-spec: func [:f][print mold first :f]

33

Scope
Functions share the same scope as the environment that called them. That is, functions can
access words on the outside without having them passed to them. And sometimes a function
doesn't know what words are defined outside the function and must not be modified. The best
thing to do is to define all words inside a function local to the function, unless you know that
you want to modify something on the outside.
But in REBOL the only things really local to a function are its parameters and refinements.
The trick used in REBOL is to define a refinement named /local and add all the words we
want to be local variables as arguments to this refinement. The special thing about this
refinement is, that it is not displayed by help.

>> f: func [a /local b][print [a "," b]]
>> f 23
23 , none

/local does not show up in the generated help, but it is still a normal refinement.

>> f/local 32 7
23 , 7

If you don't care about confusing help texts you can use other refinements as local variables as
well.

>> swap: func ['a 'b /tmp][
 tmp: get a
 set a get b
 set b tmp
]
>> set [a b][2 7]
>> swap a b
>> print [a b]
7 2

Returning Values
A function (as any other evaluated block) returns the last evaluated value. Some words
however terminate the execution of a function before the end is reached

>> f0: func [][1 2 3]
>> f1: func [][1 return 2 3]
>> f2: func [][1 exit 2 3]
>> f3: func [][1 throw 2 3]
>> f0
== 3
>> f1
== 2
>> f2
>> f3
** Throw Error: No catch for throw: 2
** Where: f3
** Near: throw 2 3

34

Function Attributes
Function attributes provide control over the error handling behaviour of functions. They are
written inside a block within the function specification body.

catch errors raised inside the functions are caught automatically and returned to the
point where the function was called. This is useful if you are providing a
function library and don't want the error to be displayed within your function,
but where it was called.

throw causes a return or exit that has occurred within this function to be thrown up
to the previous level to return.

Errors
Whenever a certain irregular condition occurs, an error is raised. Errors are of type error!
object. If such an object is evaluated, it prints an error message and halts.

>> either error? result: try [...][
 probe disarm result
][
 print result
]

try evaluates a block and returns its last evaluated value or an object of type error!. error?
returns true if an error! object is encountered and disarm prevents the object from being
evaluated (which would result in an error message and a halt).

Error Object
code error code number (should not be used)
type identifies error category (syntax, math, access, user, internal)
id name of the error. also provides block that will be printed by interpreter
arg1…3 arguments to error message
near code fragment showing where error occurred
where field is reserved

Generating Errors

>> make error! "describe error here"
>> make error! [category id arg1 arg2 arg3]

The first line creates a user error with the default id 'message. It will print the message unless
the error is handled with a catch.
The second line creates a predefined error. category and id are required and may be followed
by up to three arguments. To see all predefined errors have a look at the system/error
object where an object containing templates for the error messages lives for every category.

35

To create a new predefined error, just add a new id and error-message to the
system/error/user object.

>> system/error/user: make system/error/user [
 my-error: [:arg1 "doesn't match" :arg2]
]
>> make error! [user my-error "foo" "bar"]

You can also group a series of errors together by adding a new category to system/error

>> system/error: make system/error [
 my-cat: make object! [
 code: 1000
 type: "My Errors"
 my-error: [:arg1 "doesn't match" :arg2]
 too-late: ["it's too late"]
]
]
>> make error! [my-cat too-late]
** My Errors: it's too late
** Near: make error! [my-cat too-late]

To just print the error message without halting execution of the script, use these lines

>> disarmed: disarm try [make error! [my-cat too-late]]
>> print bind (get disarmed/id) (in disarmed 'id)
it's too late

More about bind and in can be found in the object! chapter.

36

Exercise Programs II
At the end of the first part of the book you should do even more practice in REBOL to use
what you have learned. Write some example programs if you haven't yet. The more of these
problems you solve yourself, the better you will be.

8. Code the game hangman in REBOL. (%hangman.r)
9. Make a function that acts like replace/all but for all files in a given directory and

instead of accepting only one search/replacement pair this function should accept two
blocks with search/replacement pairs. (%replace-in-dir.r)

10. Complete the function so that it takes all files in the current directory with the
specified file-type as their extension, sorts them by date and renames them to name-
prefix followed by a four-digit index starting at 1. If the refinement /offset is given,
this should be the starting index. (%name-files.r)

name-files: func [file-type [file! string!]
 name-prefix [file! string!]
 /offset i [integer!]][
 ...
]
name-files ".jpg" "vacation"

11. Add a /recursive refinement to list-dir. (%list-dir.r)
12. Write a script that recursively adds all files in a given directory to a compressed

archive. Write an extraction program for this archive that requires the user to enter a
password. Make sure the contents can not be read without the password and the
password can not be obtained from the script. (%make-sfx.r)

13. Write a script that downloads a whole website for offline browsing. Be careful to
follow only href and src attributes that point to locations on the same server.
(%get-site.r) Hint:

get-hrefs: func [markup /local urls url][
 urls: copy []
 parse markup [any [
 thru "href=^"" copy url to "^"" (append urls url)
]]
 urls
]

37

Tiny Reference
This chapter concludes the first part of the book. The following chapters are self-contained
and present a different aspect of REBOL programming each. Read them in no specific order –
just start with the chapters you are interested in most.
At the end of part one we give you a short summary on most frequently used REBOL words
already covered, to be able to cope with what follows. The exact types of arguments and
refinements can be obtained from entering help func. It's not that important to know the
functions in detail – this comes over time – but it's important to know what word to use what
for.

Console I/O
ask ... prompt user for input
confirm ... user confirms
input ... read line of input
prin ... print (without newline)
print … print (trailing newline)
probe … print molded version

Files & Directories
read … read file,url,..
write … write to file,url,..
load … load REBOL code
save … save REBOL code
rename … renames file
delete … deletes file
dir? … is a directory?
exists? … does exists?
make-dir … creates directory
change-dir … changes current path
what-dir … current path
list-dir … prints directory contents
clean-path … cleans ./ and ../
split-path … returns [path target]

Help & Debug
help … displays help
source … displays source
trace … toggle trace mode

Evaluation
do … evaluates a block
try … like do. on error, returns error!
if … conditional evaluation
either … if with alternative
switch … multiple choices

Loops
while … test-first loop

until … test-after loop
loop … evaluate several times
repeat … increment a number
for … increment a number
forever … endless loop
foreach … execute for each element in
series
forall … iterate a series
forskip … iterate a series in steps

Stopping evaluation
break … exit a loop
return … exit a function with value
exit … exit a function
halt … stop interpreter
quit … quit interpreter

Series
copy … copy a series
array … create series with initial size
reduce … evaluate inside block
compose … reduce values in () only
rejoin … reduce and join series
reform … reduce and form series
remold … reduce and mold series
pick … get element from series
first,..., fifth … get element
insert … insert at current index
append … insert at end
change … change first element
poke … change value at position
remove … remove first element
clear … remove all elements
next … series at next element
back … series at previous element
at … series at given element
skip … series after given element
head … very start of series
tail … end of series

38

length? … series' length
empty? … if empty
tail? … if empty
index? … value of current index
sort … sort a series
reverse … reverse a series
find … find an element
replace … replace an element
select … value after found element
unique … remove duplicates

intersect … sets: A ?

B

union … sets: A ? B
exclude … sets: A - B

difference …sets: (A ? B) – (A ? B)

Strings
join … concatenate values

form … convert to string
mold … make REBOL readable
rejoin … join elements in block
reform, remold … see series
lowercase … convert to lowercase
uppercase … convert to uppercase
enbase … encode in given base
debase … decode from given base
dehex … decodes %xx url-strings
compress … compresses a string
decompress … decompresses a string

Misc
now … current date/time
random … random value
wait … delays execution

39

PART II. Selected REBOL Chapters
The following chapters are self-contained texts on various interesting REBOL topics collected
from the REBOL/Core User Guide, the mailing list, various resources from other people and
of course, my experience with programming in REBOL. It is recommended that you read the
chapters you are interested most at the beginning, in order to be able to write programs you
can use and the other chapters when there is time, in order to get a decent understanding of the
REBOL universe.

40

Parsing
Parsing is the process of structuring a linear representation in accordance with a given
grammar. This definition has been kept abstract on purpose, to allow as wide an interpretation
as possible. The "linear representation" may be a sentence, a computer program, a knitting
pattern, a sequence of geological strata, a piece of music, actions in ritual behaviour, in short
any linear sequence in which the preceding elements in some way restrict the next element. (If
there is no restriction, the sequence still has a grammar, but this grammar is trivial and
uninformative.) For some of the examples the grammar is well-known, for some it is an object
of research and for some our notion of a grammar is only just beginning to take shape.
For each grammar, there are generally an infinite number of linear representations
("sentences") that can be structured with it. That is, a finite-size grammar can supply structure
to an infinite number of sentences. This is the main strength of the grammar paradigm and
indeed the main source of the importance of grammars: they summarize succinctly the
structure of an infinite number of objects of a certain class. -- [Grune, Jacobs: Parsing
Techniques, a practical guide]

<even-number> ::= <num>* [0 | 2 | 4 | 6 | 8]
<num> ::= [0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]

An example for a simple grammar in BNF notation for the infinite-size set of even numbers.
For more information on parsing in general and different parsing techniques have a look at the
execellent book on parsing techniques by Dick Grune and Ceriel Jacobs published by Ellis
Horwood, Chichester, England, 1990;

Parsing Techniques, a practical guide
Dick Grune, Ceriel Jacobs
ISBN 0-13-651431-6
http://www.cs.vu.nl/~dick/PTAPG.html

REBOL features a own BNF-like (backus-naur form) parsing dialect for this subject.

41

Quick Introduction to BNF-like Grammars
A grammar is a set of rules that describes a language, that is describes all correct assemblies
of characters to words (or words to sentences) within that language. A context-free grammar
is a formalism consisting of a set of terminal symbols T (constant, literal values), non-
terminal symbols N (placeholders for other non-terminal- or terminal symbols), a set of
production rules how to transform N to T and a special non-terminal symbol S to start the
production. The Backus-Naur Form is a notation to describe such grammars.

Again, two types of symbols exist: terminal symbols and non-terminal symbols. The terminal
symbols have a fixed, literal value. Non-terminal symbols are placeholders for other terminal-
or non-terminal symbols. If you now want to create a regular word within this defined
language, you start with a special non-terminal symbol that is defined as the entry point for all
words and continually replace the variable non-terminal symbols with values according to the
grammar rules which tell which symbol consists of what other symbols. An Example will
clarify this:

<signed_number> ::= <sign> <digits> ["." <digits>]
<sign> ::= "+" | "-" | e

<digits> ::= <digit> | <digit> <digits>
<digit> ::= "0" | "1" | "2" | ... | "8" | "9"

A simple grammar for a number consisting of a sign, some digits and an optional decimal
part. The sign can be one of +, - or e, the empty symbol. The square brackets denote that the
symbols inside are optional. Digits is either a single digit or a single digit followed by other
digits. By this recursion we get numbers of arbitrary lengths but at least one digit. The
symbols enclosed in quotes are the terminal symbols T.

-2.2.2 <sign> ... "-"
<digits> ... <digit> ... "2"
"."
<digits> ... <digit> ... "2"
"." not found in production rules; not a valid <signed_number>

13 <sign> ... e

(emtpy)
<digits> ... <digit> <digits> ... "1" <digits>
<digits> ... <digit> ... "3"
end reached, all rules obeyed; a valid <signed_number>

BNF Symbols
Non-terminal symbols <non-terminal>
Terminal symbols "terminal" or terminal
Make something optional [optional]
Repeat Zero to n times { repeated }
Repeat min to max times { repeated }min..max
Alternative <a> |
Grouped alternative (<a>) | <c>

42

Parsing in REBOL
In REBOL parsing is done with the function parse which takes two arguments: the subject
to parse and a parsing rule. The simplest method form parsing is to split a string into tokens of
information.

parse subject none split at whitespace
parse subject delim-string split at delim-string
parse subject rule-block parse according to rules

parse with none as rule does in fact no splitting. The reason the string is split after a
parse with none is, that parse per default treats whitespace as delimiter and splits. If you
call parse with the /all refinement (treat whitespace as normal characters) and none as
param, you get the string unmodified.

>> str: "1,234,220.4 56,322.0 99,118.43"
>> parse str none
== ["1" "234" "220.4" "56" "322.0" "99" "118.43"]
>> parse str ",."
== ["1" "234" "220" "4" "56" "322" "0" "99" "118" "43"]
>> parse/all str ",."
== ["1" "234" "220" "4 56" "322" "0 99" "118" "43"]

Real parsing (not splitting as we did until now) is a bit more complex. The second parameter
is a block of BNF like parsing rules. Then parse does not return the split tokens (there will be
none) but a boolean value telling whether the string completely matches the rules. That is if
the string can be built from start to its end according to the rules.
Be sure to know the basic BNF terms before continuing.

43

REBOLs BNF dialect
A dialect is an extension to the REBOL language for a particular task that makes it easier to
express what you want for that given problem, in this case: parsing.

Non-Terminal symbols
are just plain REBOL words that hold a block with a production rule.

Terminal symbols
are strings, characters, tags, bitsets and the special symbol end.

"string" matches this string
#"c" matches this character
<tag> matches this tag
end matches the end of parsed input ($ in regex)

Bitsets are used to specify a range of allowed characters:

>> numeric: charset ["012" #"3" - #"9"]
>> alphanum: union numeric charset
 [#"a" - #"z" #"A" - #"Z"]
>> white-space: charset reduce [tab newline #" "]
>> no-space: complement white-space
>> parse "parse is powerful" [some alphanum]
== true

Note that whitespace is ignored unless you specify /all.

Production rules
are any combination of terminal- and non-terminal symbols inside a block.

[pat1 | pat2] pat1 or pat2
[pat1 pat2] pat1 then pat2
[4 pat] 4 times the pattern
[2 5 pat] 2 to 5 times the pattern pat1
[some pat] 1 to n times the pattern (pattern+ in regex)
[any pat] 0 to n times the pattern (pattern* in regex)
[opt pat] 0 or 1 times the pattern (pattern? in regex)
[none] e (match nothing)

Grouping of values or words is done with square brackets.

Special words
skip skips exactly one character
to pat skips until pattern; (......)pat
thru pat skips until after pattern; (......pat)

44

Production
The process of continually replacing non-terminals with values according to the production
rules while moving over the text that is to be parsed. If we successfully reach the end, the
string is a regular word in the grammar. Fine.
But what we actually wanted to do, is parse the string not just test it. We have to somehow get
and modify the input so we can do something with it.

(code) the code is interpreted upon reaching this point
copy target copies text of next match to target
var: gets string into var
:var sets string to var

By combining grammar rules with executable REBOL code you can do powerful parsers.

45

Object!

CGI & r80v5 embedded REBOL

Network Programming

Webserver

Instant Messenger

46

XML-RPC
XML remote procedure calls – a simple way to communicate with the outside world through
the use of standard protocols. Remote procedure calls are encoded in xml and transported over
http which makes it possible for two or more programs written in different languages, running
on different systems to communicate and co-work.

47

REBOL Idioms

Getting default values
Sometimes you want to use a default value if something is none. To avoid constructs like

>> either none? system/options/cgi [][
 load system/options/cgi
]

use any to have the first value that is not false or none returned.

>> load any [system/options/cgi ""]

Reducing common sub-expressions

>> data: [name "viktor" email vpavlu@plain.at]
>> either (flag) [

 print second find data 'name
][

 print second find data 'email
]

As we know either returns the last evaluated value in the block, we can take common sub-
expressions out of the block which reduces typing effort, complexity and ease of maintaining.
Searching for a label and then reducing the value immediately afterwards should be done with
select instead of second find.

>> print select data either mode ['name]['email]

Third the either expr [][] is simply a pick with a logic! as argument (which returns
the first block if true, the second otherwise).

>> print select data pick [name email] mode

48

PART III. REBOL/View
In the third part of the book, the graphical elements of REBOL are covered. For this we have
to download REBOL/View or purchase any other of the GUI aware versions of REBOL.

The version of View and VID used in this tutorial is 1.155.2.3 (check at startup). Some new
styles have been introduced since View 1.155.0 (used in /View 1.2.1) which are discussed.
In order to have access to the same styles and words as in this tutorial, you should get the
latest version of the free /View interpreter from http://www.reboltech.com/downloads/.
The interpreter that was used for this tutorial was REBOL/View 1.2.8.3.1 (where the 3.1
stands for the Win32 platform)
To tell which version you are currently working with, type system/version in the
console.
Everything in this tutorial should work in future releases of /View as well.

All graphical elements in REBOL are made of faces. A face is an rectangular area that can be
displayed on the screen and is described by various pieces of information such as size, color,
offset, text in a specific font, an image to be displayed, entry points for event handling
functions, …
To view the basic face from which all other faces are derived type probe face in the
console. If you get an error like face has no value, you should remember to download a
graphics enabled version of REBOL. As stated before, all graphical user interfaces are made
of such faces. Fortunately REBOL provides us with an dialect for easy creation of predefined
and customized faces so we don't have to reinvent buttons and the like. So we start with
examining the visual interface dialect before diving deeper into /view.

49

VID
VID (Visual Interface Dialect) is an extension of the REBOL language that makes it easier to
express user interfaces.
layout is the function that does the VID processing. It returns a construct of faces which
can then be displayed with view.
Note: All sample code in this chapter is visual interface dialect only. The samples have to be
written inside a layout [] block which then has to be displayed.

Styles
With styles you express what to display. A field for text input or a button are examples
of styles. Every style can be customized with parameters written after them (called facets).
The order of the params does not matter as VID differentiates them by their datatype. If a
string! follows, it is interpreted as the text for the specific widget, if a pair! (20x10) follows, it
is taken as the size and so on. A complete list of styles and what params will have what effect
on them can be found in the Style Reference later in this chapter.

Using Styles
It's time that we create our first dialog. (%first-vid.r)

view layout [
 across
 label italic font [color: brick] "To:"
 tab
 inp-to: field
 return
 label italic font [color: brick] "Subject:"
 tab
 inp-subj: field
 return
 inp-text: area
 return
 button "Send" [
 foreach addr parse inp-to/text ",;" [
 send to-email addr
 rejoin [inp-subj/text newline inp-text/text]
]
 quit
]
]

The words inside the block are parsed by layout for valid VID words and then interpreted
to create a set of faces which themselves are displayed with view. label, area and
button are the styles in this example. The "To:" after the first label is a facet that tells the
label what text to display. inp-to (and the other inp- words) are normal REBOL words that
hold a reference to the style after them. So inp-to/text can be used to access the text
attribute of the input field right after to. Much the same way as a string after a style sets the
text to be displayed, a block of REBOL code sets the action that should be performed if the
style is clicked. We see that adding styles to a layout is very easy and customizing these styles
with facets is easy, too as long as we know what facets can be applied to which styles.

50

Fortunately most of the facets can be applied to all styles. A complete list of styles and
applicable facets follows, again, in the reference at the end of this chapter.
across, return and tab are keywords rather than styles that affect the placement (or
something different) of the styles.

Custom Styles
If you see yourself writing the same attributes for your styles again and again like

label italic font [color: brick] ...

in the previous example, it's time to define a custom style that already has these attributes to
reduce redundancy. Use style to define a new style based on the characteristics of an
existing one plus additional attributes.

style red-lbl label italic font [color: brick]
red-lbl "To:"
red-lbl "Subject:"

By doing so it's possible to change the appearance of the whole gui without problems, too.

Positioning
VID offers auto-layout functionality, that is we just add elements to a pane without specifying
where and VID takes care of the positioning itself. By default subsequent styles are placed
below each other but this behaviour can be changed to being placed across the GUI. Either
way the word return changes to the next column or row.

across
text "1"
text "2"
text "3"
return
text "A"
text "B"
text "C"

below
text "1"
text "2"
text "3"
return
text "A"
text "B"
text "C"

51

Style Reference

document text (dark text on light background)
title title
body normal text
text normal text
txt normal text
h1, ..., h5 headers 1 through 4
code source code (bold, nonproportional)
tt typewriter like text
lbl small label

video text (light text on dark background)
banner title
vtext normal text
vh1, ..., vh4 headers 1 through 4
label small label

text input
field single-line text input
area multi-line text input
info read-only field

buttons
button pushbutton
btn rounded button*
btn-help rounded help button (displays help messagebox)*
btn-enter rounded enter button*
btn-cancel rounded cancel button*
toggle on/off button
tog rounded toggle*
rotary switch through 1/2/../n
choice popup selector
drop-down dropdown*
check checkbox
radio radio button
arrow clickable arrow

visuals
image image
anim animated image
icon thumbsize image with text
logo-bar vertical REBOL logo*
led indicator light

areas
backdrop scaled background
backtile tiled background
box rectangular box in the foreground

other items
progress status indicator
slider sliding bar

52

scroller sliding bar with arrow buttons*
lists & sublayouts

panel [] simple sublayout
list [] repeated sublayout
text-list list of text lines

event listeners
sensor listens for mouse events
key listens for keyboard events

Note: Styles marked with an asterisk have been newly introduced in /View 1.2.8.
For a complete list of styles in your current version of /view, query the system object. Also,
have a look at %vid-inspect.r

>> styles: skip system/view/vid/vid-styles 2
>> forskip styles 2 [print styles/1]

53

Exercise Programs III
As we’ve now covered almost every aspect of creating GUIs with VID, it is time for you to
see what you have learned by creating own GUIs.

14. Write a REBLET that displays a box for every predefined color. If a box is clicked,
the color should be printed in decimal tuple (rrr.ggg.bbb) and hex (#RRGGBB) form
inside a big box that has the selected color as background. (%color-select.r)

colors: copy []
words: first system/words
forall words [
 if tuple? get/any in system/words words/1 [
 append colors words/1
]
]

15. Create a dialog with which you can send emails. (%mail-dlg.r)
16. Display the number of days between now and your birthday. (%days-to-go.r)

54

Draw
This chapter covers rendering of graphics primitives such as lines, polygons and circles. It is a
good idea to read the chapters on REBOL/View in general and the layout description dialect
VID first as these are very good sources for getting a decent grasp of the details behind /View.

REBOL/view was designed for displaying user interfaces and presentations and was
optimized for combining multiple graphical elements such as images, text, buttons, and
effects. Although it was not intended for low level graphics, such as rendering bitmaps, lines,
or polygons, it is capable of drawing basic shapes with a variety of attributes. As already
mentioned earlier, all visual elements in /view are made up of faces. One important attribute
of those faces is their effect block, which holds effect words. A very important and powerful
word in the effect dialect is draw.
Draw is another dialect of its own which is capable of rendering basic shapes and will be
examined in detail in this chapter.

The draw dialect is very similar to VID which we already know. It consists of words that
specify how the following values should be interpreted (ie. line) and the values that actually
specify the primitive (ie. coordinates).

line 10x90 50x10 90x90
line 25x50 75x50

Here we draw two linestrips that look like an ‘A’.
The examples in this chapter are draw code only and must be encapsulated within a draw
block inside effect of a face.
The most important thing you need to know from VID is that you can't draw just anywhere.
The draw dialect inside faces' effect blocks is currently the only method of drawing primitives
in /view. So the first thing you need to create is a face as your drawing canvas.

>> view layout [
 origin 0x0
 box white 400x300
 effect [
 draw [
 ;draw code goes here
]
]
]

55

In the previous example the white box is your drawing canvas with 0x0 at the upper left
corner and 400x300 at the lower right.
If you are not familiar with VID concepts, use this function to conveniently test the draw
examples

>> draw: func ["draws basic shapes with draw dialect"
draw-code [block!] /size s][
 if not size [s: 100x100]
 view layout compose/deep [
 origin 0x0
 box white s
 effect [
 draw [(draw-code)]
]
]
]

>> draw [pen black line 100x100 0x0]

Draw Dialect Words
line draw a line
polygon draw a polygon
box draw a rectangle
circle draw a circle
pen set foreground and background color
fill-pen set foreground and background fill colors
line-pattern set the line pattern
flood fill from a point outward
image insert an image
text draw text
font specify text font attributes

56

Drawing in Detail

Lines
The line command draws a line between two given points. Points are given as pair! values
where 0x0 is the upper left corner and values are increasing to the lower right (fourth quarter
in standard cartesian coodinate space). If more points are given, multiple lines are drawn
connected but the linestrip is not closed (as with polygon).
The line is drawn in the current pen color using the current line-pattern.

line 0x0 20x20 40x0

Polygons
For simple examples drawing polygons seems to be equal to drawing lines except that the last
point is connected back to the first. With filling however, the difference becomes apparent:
Polygons describe areas rather than linestrips.
Polygons are always filled with the current fill-pen.

fill-pen gold
polygon 10x100 50x10 90x100 50x75

Bugnote: In version 1.155.2.3 of View and VID (check at startup), polygons lose their edge
colors when a fill-pen is specified. This is going to be fixed.
And in some cases, rendering of polygons that extend outside the bounding face may crash
during rendering the draw. This is hopefully going to be fixed, too.

Rectangles
box provides a shortcut to drawing rectangular shapes. Only the upper left and lower right
coordinates are required.

box 20x20 80x80

Circles
With circle you can draw circles by specifying the center point and the radius (which must
be an integer).

circle 50x50 40

57

Specifying Colors
We have already used this in the preceding examples. pen sets the outline color (affects
line, polygon, box, and circle) while fill-pen sets the color with which areas are
filled (affects polygon, box, circle, and flood).
Both pens have a foreground and a background part. The foreground color is the one which is
visible. The background color for pen is used with line-patterns as the secondary color. The
fill-pen background color has no meaning (View 1.155.2.3).

pen red blue
fill-pen none
line-pattern 2 4 1
line 10x10 90x90 90x10 10x90 10x10

A color set to none means transparent.
The pen foreground defaults to inverse face color. All other colors default to none.

Line-patterns
Line-patterns affect the rendering of outlines for line, polygon and box (not circle!). The
parameters are lengths of line segments that are alternately drawn in foreground color or
omitted (that is, drawn in background color). Up to eight lengths may be specified. After that
the pattern repeats itself.

pen navy none
line-pattern 4 4 1 4 ;dash-dot
box 10x10 80x80
line-pattern ;solid again
box 20x20 90x90

line-pattern without parameters sets the style back to a solid line.
Bugnote: In version 1.155.2.3 of View and VID (check at startup), a bug with background
colors and line-patterns was discovered.

Filling areas
With flood you flood fill the area around a given point with the fill-pen foreground color
until any other color is reached.

pen sky
fill-pen white
line 20x30 50x80 80x30 20x30
line 20x65 50x15 80x65 20x65
flood 50x50

58

You can also specify a border color. Then the flood fill stops at no color but the specified one.

pen sky
fill-pen white
line 20x30 50x80 80x30 20x30
pen leaf
line 20x65 50x15 80x65 20x65
flood 50x50 leaf

Adding Images
Adding images to faces can also be done in the draw block. (if you want the face to be
completely covered by an image, it's better done directly in VID). The syntax for adding
images is as follows

image pos [pair!] image [image!] ?transparent-key [tuple! integer!]?

which adds the image at the given position. The optional third parameter specifies the color
that should be rendered as transparent. If the transparent-key is a tuple! this color is
considered transparent. If it’s an integer!, all colors with a lower luma value are drawn
transparently.

Adding Text
Adding text is similiar to adding images.

text pos [pair!] text [string!]

inserts the text at the given position with the font settings of the face. The position resembles
the upper left corner of the text.
With the font word you can set the faces' font from inside the draw block the same way as
you would do in VID. The color however, is affected by the pen foreground.

pen black
text 10x10 “Standard”
font make face/font [name: “Verdana”]
text 10x30 “Verdana”
font make face/font [name: “Trebuchet MS”]
text 10x50 “Trebuchet MS”
font make face/font [name: “Sans-serif”]
text 10x70 “Sans-serif”

59

The font-obj must be made of a valid face/font object. With the name field you can
select an font available on the system. If a font is not found, the standard font (Arial) is used.

>> probe face/font

make object! [
 name: "arial"
 style: none
 size: 12

 color: 0.0.0
 offset: 2x2
 space: 0x0
 align: 'center
 valign: 'center
 shadow: none
]

Working with Images
The draw part of this chapter is now finished. This last paragraph shows how to store drawn
things in offscreen images or files. This technique is not restricted to draw but rather can be
applied to all types of faces.
After creating a set of faces with layout or make face we usually viewed them, but we can
also convert all those styles, facets, font information, effect- and draw-instructions to a plain
image.

>> lay: layout [
 origin 0x0
 box white 30x30
 effect [
 grid 10x10 32.128.32
 draw [
 pen brick
 line 0x0 30x30
 line 10x0 30x20
 line 20x0 30x10
]
]
]
>> img: to-image lay
>> length? mold lay
== 744821
>> length? mold img
== 5514

img now holds a pixel representation of the previously created layout. With save and the
appropriate refinement create a valid .png or .bmp header, you can create image files.

save/png %layout.png img

60

You can also create an image from scratch. For example a 2x2 image with pixels set to red,
green, blue, and yellow.

>> squares: make image! 2x2
>> squares/1: red
>> squares/2: green
>> poke squares 3 blue
>> poke squares 4 yellow

>> view layout [image squares 20x20]

The size of 20x20 is specified to stretch the image to be 20x20 pixels in size in order to make
it more easily visible. The image, though, is still 2x2 pixels.

Single pixels can be accessed as if they were in a normal block holding the color values line
by line. That’s what we did with poke. Use these functions to access the pixels in a more
common way:

>> getpixel: func [
 "returns color at given pos (0x0 is upper left)"
 img [image!] pos [pair!]
][
 pick img img/size/x * pos/y + pos/x + 1
]

>> setpixel: func [
 "sets pixel at given pos to color (0x0 is upper left)"
 img [image!] pos [pair!] color [tuple!]
][
 poke img img/size/x * pos/y + pos/x + 1 color
]

61

Exercise Programs IV
Again, it’s time to get some hands-on experience by solving simple exercises.

17. Write a simple REBLET that draws a scaled graph of values inside a block. The block
can be of any length and the values of any size - the graph should always be 400x300
in size. (%draw-graph.r)

18. Extend %draw-graph.r to be able to render multiple graphs. The ingoing block
consists of a color followed by a block of values for each graph. All value blocks are
of the same length. (%draw-graph2.r)

19. Write a REBLET that draws a pie chart from [color number] values inside a block.
The block can be of any length and the values of any size - the graph should always be
400x400 in size. (%pie-chart.r)

20. Write a script that creates .png thumbnails for all .jpg files in a given directory. The
size of the thumbnails is 120 pixels in width or height, which is smaller. The other
coordinate should be resized accordingly. Also write the size (KB) of the original
image in the thumbnails. (%thumbs-make.r)

62

Effects

The effect block is an attribute that every face has. Inside this block various effects can be
specified to be applied to the face. We already discussed the draw command inside the
effect block with which you can draw lines etc. But the effect block offers many more
commands that affect the view of a face besides draw.

Applying effects to a face is very easy - just append the word effect followed by a block of
effect dialect words that will be applied to the face in the entered order.

>> view layout [
 origin 0x0
 box black 100x100 effect [
 draw [
 fill-pen red
 circle 50x50 45
 pen black
 line 50x5 50x95
 line 5x50 95x50
]
]
]

What follows is a list of all available effects plus a short description what the effect does and
how it is to be applied.

Scaling
fit face is resized to fit in parent face
aspect same as fit, but aspect ratio is preserved
extend extend-offset[pair!] pixels-to-extend[pair!] stretched without affecting scale

Tiling
tile image is tiled over face
tile-view image is tiled over face; tile offset is relative

to window face

Subimages
clip clips image to size of face (speeds up effects)
crop position[pair!] dimension[pair!] extracts specified image from face

Translation
flip direction[pair!] flips image in given direction
rotate degrees[integer!] rotates number of degrees in clockwise

direction (90,180,270,360 are supported)

63

reflect direction[pair!] reflects an image in X,Y or both directions.

positive values to reflect upper/left part, negative for lower/right

Image processing
invert inverts colors in rgb color space
luma val[integer!] modifies brightness of image (positive

lightens, negative darkens image)
contrast degree[integer!] modifies contrast (positive inreases contrast)
brighten degree[integer!] modifies brightness of image
tint color-phase[integer!] modifies tint of image with given color-phase
grayscale converts image to grayscale
colorize color[tuple!] colors an image with given color
multiply value[integer! tuple! image!] multiplies each pixel with give value
difference [integer! tuple! image!] difference to each pixel is computed
blur blurs image (use multiple times)
sharpen sharpens image (use multiple times)
emboss applies emboss effect

Gradients
gradient direction[pair!] [color-from[tuple!]] [color-to[tuple!]] produces gradient

effect in given direction with optional colors
gradcol like gradient, colorizes image
gradmul liek gradient, multiplies color values

Keys
key [tuple! integer!] all values with lower luma value as given

integer! or with a color equal to given tuple! are considered transparent
shadow equal to key, but additionally generates 50%

drop shadow

Algorithmic Shapes
colors can be specified, edge color is used otherwise

arrow creates a equally-sided triangular shape
pointing upwards

cross lays a X over the face
oval leaves a oval hole over face, rest is overlayed
tab [edge-to-round[pair!]] [radius[integer!]] [thickness[integer!]] [color[tuple!]]

generates button with rounded corners
grid space[pair!] draws a grid

64

Handling Events
As we already know how to create GUIs, it's time that we get to know how to let them do
something useful, that is make them respond to the users' actions. Until know we did this by
appending a block of REBOL code to styles we added to our layout. This code was executed
when the user clicked the button, text, ... or triggered something we can think of as the main
event of the control, somehow different. (ie. dragging a slider or pressing a key that was
defined as shortcut). But there are also other events that a face can react on which we are now
going to examine.

Every face has a feel object that defines how the face behaves on events. Whether the user is
pressing a key, moving the mouse or the face needs to be redrawn etc – it's the feel of the
object that determines how the event is handled.

The Feel Object
All events in /View are handled by only four functions which are in the feel object of every
face. These functions are:

engage: func [face action event][...]
This is the real event handler for the face. It gets called when the user presses or
releases a mouse button or key on the keyboard, when a timer exceeds, …

detect: func [face event][...]
Is called for every event that is intended for this face or faces that lie inside this face
enabling you to intercept certain events to keep your GUI free of unnecessary event
processing.

redraw: func [face action position][...]
Redraw is called whenever something in the displaying of a face changes. Each time
the face refreshes, is shown or hidden this function gets called. Note that position
is not the position of the cursor but the position of the face. Only interesting with
iterated layouts like list.

over: func [face action position][...]
Over is called whenever the cursor is moved over a face. As this happens very often,
this function should be set to none unless you really need it to not unnecessarily slow
down /View. Position tells the position of the mouse cursor relative to the upper left
corner of the window.

Every face may implement their own bodies for these functions or just set them to none. The
face parameter always holds the face for which the event occured. action is a word that
identifies the type of event like down if the mouse button has been pressed. position is a
pair! value giving coordinates. The last parameter is the event object which is of type event!

65

Event!
All events in /View are stored as special datatypes called event!. In order to be able to write
your own event handlers, you need to know about the event that occured. Usually, if we don't
know what fields exist in an REBOL object, we try something like help or mold to see the
objects' fields – with event!s however, this does not work.
Here is the information I gathered from the mailling list and various examples:

face The face in which the event occured (root pane)
type A word that describes the type of event – same as action
offset Current position of the cursor relative to the root pane
key A character representing the key that was pressed (if it was a key

event). If the it was a special key (ie F1) a word representing the keys'
name is stored instead. None with non-key events.

shift a logic!, true if the shift-key was pressed during the event
control a logic!, true if the ctrl-key was pressed during the event

(if something is missing or I'm plain wrong, please tell me via vpavlu@plain.at)

Engage
As the main event handler, engage is called for all events that are not handled by redraw
or over. That is mouse events where a button is pressed or released, keyboard events and
timers.

engage: func [face action event][...]

Try this small example to get familiar with engage. It will create a box, just as we did in the
previous /View chapters but this time we add our own feel.

>> view/new layout [
 canvas: box ivory rate 1 feel [
 engage: func [face action event][
 print rejoin ["action = '" action]
 if action = 'key [
 print join event/key " was pressed."
]
]
]
]
>> focus canvas ;key events need focus
>> do-events

Some actions we see: (alt-)up, (alt-)down, over, away, key, time, scroll-line, scroll-page

Timers
Also note the word rate – It specifies how many time events should be triggered per second.
Or instead of time events per second you can also specify the intervals between two time
events by passing a time! value like 0:00:10 for every 10 seconds.
To stop a timer, the face/rate is set to none and show is called to update internal timer
settings.

66

Detect
detect is similar to engage in terms of what events trigger it. But it also has the ability to
swallow events so the subfaces never get notified of events filtered by detect.

detect: func [face event][...]

Either none (the event is swallowed) or the event (passed to subfaces for further processing)
must be returned.

Redraw
The redraw function is called immediately before the face is drawn.

redraw: func [face action position][...]

It listens for three types of actions: show, hide and draw.
If the GUI is displayed for the first time or the show command is applied to a face, the
redraw function of that face is called twice – first with a show, then with a draw message.
If the face is hidden (ie. hide command), it receives the appropriate hide action.

Over
Last but not least, the over function which is called whenever the mouse cursor enters or
leaves a face. You can also force view to call over for all cursor move events by passing
the all-over option to view. Note that this can drastically reduce performance of your
GUI.

>> view/options layout [
 box ivory feel [
 over: func [face action position][
 print join either action [
 "entered at"
][
 "exited at"
] position
]
]
][all-over]

In over, action is a logic! that expresses whether the cursor entered or left the face.

67

Exercise Programs V
This chapter ends our expedition into /View. We have learned the basics of VID and how this
dialect integrates into /Views system of faces, created and modified styles, discussed the
details of effect and draw and finally put life into our interfaces. Now it’s time to bring all this
together.
After some simple feel-only exercises, more complex ones follow for which you’ll need
knowledge about /View in general and especially /Views VID.

21. Create a style for a drag-able box (%drag-box.r)
22. Create a digital clock (%clock.r)
23. Create an analog clock (%clock-draw.r)
24. Write a REBLET that can be used to change a password providing two text entry

fields that display stars instead of the entered characters. The REBLET should
furthermore contain an information field that displays “the password is too short” (less
than 5 characters), “passwords do not match” or “passwords ok” depending on the
input in the fields. Third there has to be an OK button that is only clickable, if the
passwords are equal and long enough. (%passwd-dlg.r)

25. Write an application with which the user can draw lines. If the right mouse button is
pressed, an color selection dialog (request-color) should pop up to set the color
of the lines. (%paint.r)

26. Extend %paint.r to let the user select the type of primitive to draw via a context-menu
that pops up when the right mouse button is pressed. Also provide a menu entry for
color selection in the context-menu. Primitives the user might want to draw are lines,
rectangles and circles.
F12 saves the currently created image as .png to disk (request-file) (%paint+.r)

27. Create an application that lets the user play around with an neuronet consisting of
simple threshold-based mccullogh-pitts cells.
A cell fires if the sum of all inputs (xi (0..n)) times their weights (wi (0..n)) is not lesser
than the given threshold value.

sum (xi * wi)0..n >= th

Nodes are added via left mouse button click, can be dragged around and their
threshold value can be edited if a node is double-clicked. Assume a value of 1 for all
weights. The inputs come from other cells that are connected to them and are either 0
or 1, if the cell fires or not. The connections between nodes should be created by
dragging the lower left corner of one cell over another. If this happens, a line should
be drawn indicating the connection. Initial nodes (the ones with no inputs) can be
switched on or off.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

